
Thursday, March 21

Structure of a C++ Program

Variables, Data Types and

Constants

Operators

Primitive I/O Operations

Console Communication

Basics Covered…….

Today……..

Control Structures

Keeping Perspective

A program is rarely limited to a

sequence of linear instructions.

During execution, code may need to:

•Repeat

•take decision paths

•branch

C++ provides control structures to manage the logic flow

of a program.

Control Structures

X

Control Structures

Selection

Repetition

Bifurcation (Branching)

Repeat a programming instruction while a condition remains true

while, do while, for

Take action based on the value of one or more constants/variables

if, if else, else if,switch-case

Leave a loop even if the condition for its end is not fulfilled

break, continue, goto, exit

Control Structures

illustrated

RepetitionSelection BranchingSelection

width_ok = width < 15;

too_high = height > 13;

load_ok = weight < 45 && weight/(width * Length) < 0.2;

if (width_ok && weight !too_high && load_ok)

cout << “OK to cross bridge\n”;

else

{

cout << “Do not cross bridge!\n”;

if (!load_ok)

cout << “Excessive weight or load factor.\n”;

if (!width_ok || too_high);

cout << “Too wide or too high\n”;

if (height = = 13)

cout << “Height is at the borderline.\n”;

}

Control Structures

if, else, else if

Terms and Concepts

•Condition ()

•Logical Expressions T/F

•Compound Expressions

•Multiple Statements

{} Curly Braces

•Logical Operators

•Relational Operators

if (condition)

statement

if (width < 30)

cout << “OK to cross bridge.\n”;

logical expression

condition

statement

Control Structures

syntax - if

One Way

Selection

if (condition)

statement1

else

statement2

if (width < 30)

cout << “OK to cross bridge.\n”;

else

cout << “NOT ok to cross bridge.\n”;

logical expression

condition

statements

Control Structures

syntax – if else

Two-Way

Selection

if (condition)

statement1

else

if (condition2)

statement2

.

.

else

statement n

if (width_ok && !too_high)

cout << “OK to cross bridge.\n”;

else

if (!load_ok)

cout << “Excessive weight.\n”;

else

Multi-Way

Linear

Selection

AKA Nested if

Control Structures

syntax – else if

if (width_ok && weight !too_high && load_ok)

cout << “OK to cross bridge.\n”;

else

cout << “NOT ok to cross bridge.\n”;

compound expression

condition

Control Structures

using a compound

expression

Operand1 operator Operand2

if (width_ok && weight !too_high && load_ok)

cout << “OK to cross bridge.\n”;

else

{

cout << “NOT ok to cross bridge.\n”;

cout << “GO HOME!\n”;

}

Multiple

statements

Control Structures

using multiple

statements

{

statement1

statement2

}

(width > 30)

width_ok && !too_high

cout << “OK to cross bridge.\n”;

{

cout << “NOT ok to cross bridge.\n”;

cout << “Go Home!\n”;

}

if (width_ok && !too_high)

cout << “OK to cross bridge.\n”;

else

if (!load_ok)

cout << “Excessive weight.\n”;

1.

2.

3.

4.

5.

a. Multiple

statement

b. Statement

c. Multi-way

selection

d. Compound

expression

e. Condition

a

b

d

e

c

The NOT operator accepts one input; if that input is TRUE, it returns FALSE, and if that input is

FALSE, it returns TRUE. In C and C++ NOT is written as !. NOT is evaluated

prior to both AND and OR.

Control Structures

review

Equal = =

Not equal !=

Greater than >

Less than >=

Greater or equal than >=

Less or equal than <=

(5 = = 4) would return false

(5 != 4) would return true

(5 > 4) would return true

(5 < 4) would return false

(5 >= 4) would return true

(5 <= 4) would return false

Control Structures

using relational

operators

Note: In many programming languages, “ = “ is used to assign a value to a

variable and as a Relational Operator to test a condition.

Relational operators are used in expressions to enable

Comparisons. The condition returns a True or False.

Logical Operators

Logical operators are used to evaluate compound expressions

and obtain a single result.

if ((type = = ‘a’ || age > 25) && years !< 5)

cout << “Qualifies for Discount";

&& (AND) - Both

|| (OR) - Either

! (NOT) - Reverse

Control Structures

using logical

operators

Operand1 operator Operand2

First Operand

a

Second Operand

b

Result

(a && b) !(a && b)

Result

(a || b) !(a || b)

true true true false true false

true false false true true false

false true false true true false

false false false true false true

The table below shows the evaluation returned by logical

operators for possible operand values.

Control Structures

compound expression

evaluation

•Understand the problem

•Use top-down design – decompose the problem

•Psuedo-code

•Code

•Test & Debug

Control Structures

maintaining good

practices

When coding control statements, always be sure you…..

Control Structures

language comparison

Control Structures

review

In many compilers previous to the publication of the ANSI-C++ standard, as well as in the C language,

the relational operations did not return a boolean value of true or false, rather they returned an int as

The result with a value of 0 represent "false" and a value different from 0 (generally 1) to represent "true".

Mark the boxes below as True or False indicating the return

value of the expression. Last 2 are fill in the blanks.

Assume a=2, b=3 and c=6

1. (a*b >= c)

2. (b+4 > a*c)

3. ((b=2) = = a)

4. Name two other types of operators discussed in

previous classes. __________ __________

5. && is an example of a _________ operator while

= = is a __________ operator.

T

F

T

arithmetic assignment

logical

relational

Control Structures

debug program

//wages.cpp

#include <iostream.h>

#include "\ourtools.h"

void main()

{

const float MIN_WAGE = 5.35;

int hours;

float rate, wages;

cout << "Enter hours worked and hourly rate: “;

cin >> hours >> rate;

{

if (hours >= 0 & rate >= MIN-WAGE)

// valid inputs for hours and rate

if (hour <= 40)

wages == hours * rate;

else

wages = 40*rate + (hours-40)*2.0*rate;

fixed-out (cout, 2);

cout << "Wages << == $” << wages << endl;

}

else // hours and/or rate invalid

cout << "INPUT ERROR(S).\n";

}

