Welcome to:

Introduction to COBOL
Programming

PP Education

Leveraging Techuology
itk
Dedicated Specialiato



! ' o 5.1 Objectives

After completing this chapter, you be able to test and debug COBOL
programs you have written. Specifically, you will be able to:

 Describe three strategies for testing new or revised code
e List nine debugging tools to solve programming problems
 Describe common errors and their solutions

» Describe common abnormal and (ABEND) codes

Page 2-1



“ v o 5.2 Topics to be Covered

R
OCU

\Testing strategies
NTesting and debugging tools
N Common ABEND codes

Page 2-1



o o 5.2.1 Testing Strategies

CR
FOCU

N\ Unit Testing

< Compile and link program with no diagnostic errors

*
x¥

Prepare test data which will test every line of code

*
x¥

Develop Test Plan

*
x¥*

Review Output

*
x%*

Iteratively correct errors as they occur and retest

*
x¥

Be sure program documentation is in place

*
x%*

Place program in a place for system testing

\ System (Integration) Testing

k

++ How inputs and outputs mesh with other components

N Regression Testing
++ Are Inputs and Outputs alike? Changed?

Page 5-3



o o 5.2.2 Testing and Debugging Tools

NJOB Output
«First page in output may tell a story
NSYSDBOUT

++Compile with STATE and FLOW options

«If program ABENDS, paragraph and Program
Status Word Listed

~*Program Status Word

«* Address - error location

«Offset - position within module

bl

«Contents directory - program list

bod

[ Load modules - yours 1s usually first

#General Purpose Registers
Page 5-4



M NSYSUDUMP

«xA dump of your program in hexadecimal

NSYSABEND

A dump of system nucleus in addition to your
program

+Only if requested by system programmer

NSYSOUT
«xUse DISPLAY verb liberally to help test
«xUse READY TRACE to track paragraph names

«+TEST or TESTCOB
«xOnline facility for testing COBOL programs

Page 5-4



M NCOBTEST

+xOnline and batch facility for testing
VS COBOL II

NCA/Easy Test
«xThird Party vendor product

Page 5-4



> o 5.3 Workshop

CR
FOCU

Do review questions on pages 5-8 and 5-9.
Do not do page 5-10

Diagnose the following program problems.
Determine the mainframe equivalent of the

problem conditions you find.

N Open the program BOMBO03.CBL for animation. Compile the
program, and then, use Step to move through the logic. Do not use

N Open the program BOMB06.CBL for animation. Compile the
program. You may use Step or Run for this diagnostic.

N Open the program BOMB06.CBL for animation. Compile the program
You may use Step or Run for this diagnostic.

. Open the program BOMB09.CBL for animation. Compile the program
You may use Step or Run for this diagnostic.

N Clean-up all syntax errors in BOMB00.CBL. Compile and Runpg. 510



> o 5.3 Workshop

CR
FOCU

. Unit Testing, System (Integration) Testing Regression Testing
. READY TRACE

COBTEST

. 0C7

001

c.- SYSOUT

B37

R e

BOMBO03.CBL - Infinite Loop - B37
BOMBO06.CBL - Illegal Character in Numeric Field - OC7
BOMBO09.CBL - Subscript Out of Range - OC4

Page 5 8-10



}

=z
O~

(1!

wuQ

*k
*
*k
*
*k
*
*k
*
%k

*
*%

k%
k
%%k
*
*%
*
k%
*%
*
k%
*
*%
*
k%
*
k%
*
k%
*
k%
*
k%
*
k%
*
k%

*
k%

Describe the steps of the Programming Life Cycle
Describe the function of the four COBOL divisions
List the advantages and disadvantages of COBOL
Describe the purpose of the COBOL compiler
Understand the column structure of COBOL

Code an identification division
Code an environment division

Code a data division

Tell whether statements belong in the A-margin or B-margin

Write a record description for a file
Process literals and figurative constants
Describe the mainframe COBOL compiler

Code file 1/0 statements (OPEN, CLOSE, READ, WRITE)

Code special 1/0 statements (ACCEPT, DISPLAY)
Perform basic data transfer (MOVE)

Detect when an end-of-file condition is reached

Create a simple COBOL program using TSO/ISPF, Micro Focus

End the program as needed (GOBACK, STOP RUN)
Compile, link, and test a simple COBOL program
Understand the function of an optimizer

Test data to determine proper action

Perform unconditional branches

Execute sequence, selection and iteration

Perform valid comparisons of data

Validate data for numeric contents

Test logical conditions using AND, OR, or NOT
Use conditional names to clarify and reduce coding
Use switches in a program

Describe testing strategies

Describe testing and debugging tools

Recognize common abend codes

Review......

At this point we should be
able to:

Use the Micro Focus Workbench to Edit, Syntax Check and Animate a program



MICR
FOCU

. o 6.1 Objectives

After completing this chapter, you be able to use compound statements
and artihmetic in your COBOL programs. Specifically, you will be
able to:

 Use counters in a program
e Use COBOL statements to
i ADD
i SUBTRACT
i MUTIPLY
i DIVED
i COMPUTE

* Round routines ON SIZE ERROR
» Use RETURN-CODE register

Page 6-1



¢ ' o 6.2 Topics to be Covered

NCOBOL arithmetic and options
NADD

NSUBTRACT

NMULTIPLY

NDIVIDE

NCOMPUTE

N Return-Code

Page 6-2



”~ o 6.2.1 COBOL Arithmetic

CR
FOCU

N 18 digits
NFive Verbs
w* ADD
»+*SUBTRACT
»+*MULTIPLY
+DIVIDE
+COMPUTE

NReturn-Code

*x

*x

Page 6-3



et

M1

NROUNDED

wiero 0.2.2 COBOL Arithmetic Options

«xExcess Digit Dropped

«If first digit dropped is 5 or larger, rounding

OCCUTIS
Computation Result PICTURE CLAUSE VALUE STORED
25.24 S99V9 25.2
25.25 S99V9 25.3
-25.24 S99V9 -25.2
-25.25 S99V9I -25.3

Page 6-4




o o 6.2.2 COBOL Arithmetic Options

CR
FOCU

NON SIZE ERROR

«xDivision by zero always causes a size errot
i Value 1s not stored

i Instruction(s) performed

«xExample
ADD A TO B ON SIZE ERROR
PERFORM NUMBER-RTN.

Page 6-4



e 6.2.3 ADD

CR
FOCU

ADD (CORRESPONDING } identifier-1 TO identifier-2 [ROUNDED]
[ON SIZE ERROR imperative statement-1]

[NOT ON SIZE ERROR imperative statement-2 ]

[END-ADD]

Examples:

ADD TOT-1-COUNTER TO TOT-2-COUNTER
ADD TOT-1-COUNTER, TOT-2-COUNTER GIVING TOT-3-COUNTER
ADD FICA, INCOME-TAX, HEALTH-INSURANCE

GIVING TOTAL-DEDUCTIONS
ADD 57 TOT--1-COUNTER TO TOT-2-COUNTER
ADD 97 TO AMOUNT-DUE
ADD MONTHLY SALES TO QUARTLY-SALES ROUNDED
ADD COMMISSION TO INCOME

ON SIZE ERROR
PERFORM 800-CALL-IRS
THRU 800-CALL-IRS-EXIT e 65



v 6.2.4 SUBTRACT

CR
FOCU

SUBTRACT identifier-1 FROM identifier-2 [ROUNDED]
[GIVING identifier-3]
[ON SIZE ERROR imperative-statement-1 |
[NOT ON SIZE ERROR imperative-statement-2 ]

[END-SUBTRACT]

Examples:

SUBTRACT TOT-1-COUNTER TOT-2-COUNTER FROM TOT-3-COUNTER
SUBTRACT FICA, INCOME-TAX, HEALTH-INSURANCE FROM

GROSS-PAY GIVING NET-PAY
SUBTRACT 57 FROM TOT--1-COUNTER GIVING TOT-2-COUNTER
SUBTRACT 97.5 FROM AMOUNT-DUE ROUNDED
SUBTRACT COSTS FROM INCOME GIVING PROFITS

ON SIZE ERROR

PERFORM 600-FILE-CHAPTER-11

Page 6-6



e 6.2.5 MULTIPLY

CR
FOCU

MULTIPLY identifier-1 BY identifier-2 GIVING {identifier-3 [ROUNDED]}...
[ON SIZE ERROR imperative-statement-1 |
[NOT ON SIZE ERROR imperative-statement-2 |

[END-MULTIPLY]

Examples:

MULTIPLY PERCENT-1 BY SALE GIVING COMMISSION
MULTIPLY 1.08 BY DEPOSIT GIVING CURRENT-BALANCE ROUNDED
MULTIPLY NATIONAL-DEBT BY INFLATION-RATE

GIVING NEW-DEBT

ONSIZE ERROR

PERFORM 900-GRAMM-RUDMAN-HOLLINGS

Page 6-7



e

M1
F O

CR
Cu

O
5

6.2.6 DIVIDE

DIVIDE identifier-1 [INTO] identifier-2 GIVING identifier-3 [ROUNDED]...
[BY]
[REMAINDER identifier-4]
[ON SIZE ERROR imperative-statement-1]
[NOT ON SIZE ERROR imperative-statement-2]
[END-DIVIDE]

Examples:

DIVIDE COMMISSION INTO TOTAL-AMOUNT

DIVIDE 1.08 INTO CURRENT-AMOUNT ROUNDED

DIVIDE TOTAL-CHARGE BY 2 GIVING BIG-DISCOUNT

DIVIDE 5 BY PARTS-IN-STOCK GIVING CALC-PERCENTAGE
DIVIDE PARTS-IN-STOCK INTO 50 GIVING CALC-PERCENTAGE

Page 6-8



e

M1
F O

CR
Cu

O
5

6.2.7 COMPUTE

COMPUTE {identifier-1 [ROUNDED]}....

[EQUAL]
[ = ] arithmetic-expression

[ON SIZE ERROR imperative-statement-1 ]

[NOT ON SIZE ERROR imperative-statement-2 |

[END-COMPUTE]

Examples:

COMPUTE COUNTER =9
COMPUTE TOTAL = A-CTR + B-CTR + C-CTR
COMPUTE COST = COST *1.10
ON SIZE ERROR
PERFORM 900-COST-ERROR-RTN

Page 6-9



6.2.8 RETURN-CODE

N Special Register

NMOVE value (0-4095) immediately
GOBACK

N Example

CLOSE SALES-FILE
REPORT-FILE.
IF ERROR-COUNTER =0

THEN
MOVE 0 TO RETURN-CODE

ELSE
DISPLAY ¢“*** THERE WERE ¢ ERROR-COUNTER

‘ERRORS IN THE PROGRAM ##*%’

MOVE 8 TO RETURN-CODE.

GOBACK.

Page 6-10



> o 6.3 Workshop

CR
FOCU

Do exercises on pages 6-11 and 6-12. Do not do the exercise on 6-13.

Add an accumulator to Program?2.cbl to total a gross sales figure for the
SALES.DAT file. At the end of processing, Display this total to the
screen. Compile and test.

Add a line of code in Program?2.cbl to Display a RETURN-CODE of 8 if
the SALESCODE is not numeric. Compile and test.

Page 6 11-13



}

=z
O~

(1!

wuQ

6.3 Workshop

1.
A. ADD SUM-1 TO SUM-2 GIVING SUM-3.
B. ADD SALESPNL, OFFICERS, WORKERS GIVING TOTAL-EMPLYEES
C. SUBTRACT INV-SOLD FROM INVENTRY-IN-STOCK GIVING INVENTRY-IN-STOCK
D. MULTIPLY HOURS-WORKED BY PAY-RATE GIVING GROSS-PAY
E. DIVIDE TOTAL-PAYROLL BY TOTAL-EMPLYEES GIVING AVERAGE-PAY ROUNDED
2.
IF CURRENT-SALES IS GREATER THAN 5000
MULTIPLY AGENT-COMMISSN BY 2 GIVING AGENT-COMMISSN
3.
A. COMPUTE HOURLY-RATE = ANNUAL-SALARY /2080
B. COMPUTE FICA-WITHHELD = GROSS-PAY * FICA-RATE

COMPUTE GROSS-PAY = (RATE * STD-HRS) + ((ACTUAL-HRS - STD-HRS) * OT-FACTOR))
ROUNDED

4.
I[F ACCOUNT-AMT NOT NUMERIC
THEN MOVE 1234 TO RETURN-CODE
DISPLAY “*** ACCOUNT AMOUNT IS NOT NUMERIC’

Page 6 11-13



}

=z
O~

(1!

wuQ

k%
*
*%
*
k%
*
k%
*
k%
*
k%
*
k%
*
k%
%
k%
*
k%
*
k%
*
k%

*
*k

Describe the steps of the Programming Life Cycle
Describe the function of the four COBOL divisions
List the advantages and disadvantages of COBOL
Describe the purpose of the COBOL compiler
Understand the column structure of COBOL

Use the Micro Focus Workbench to Edit, Syntax Check and
Animate a program

Code an identification division

Code an environment division

Code a data division

Tell whether statements belong in the A-margin or B-margin
Write a record description for a file

Process literals and figurative constants

Describe the mainframe COBOL compiler

Code file 1/0 statements (OPEN, CLOSE, READ, WRITE)
Code special 1/0 statements (ACCEPT, DISPLAY)
Perform basic data transfer (MOVE)

Detect when an end-of-file condition is reached

Create a simple COBOL program using TSO/ISPF, Micro Focus
End the program as needed (GOBACK, STOP RUN)
Compile, link, and test a simple COBOL program
Understand the function of an optimizer

Test data to determine proper action

Perform unconditional branches

Execute sequence, selection and iteration

Perform valid comparisons of data

Validate data for numeric contents

Test logical conditions using AND, OR, or NOT

Use conditional names to clarify and reduce coding

Use switches in a program

Describe testing and debugging tools

Describe testing strategies

Recognize common abend codes

Review......

At this point we should be

able to:

£ 3
*%

*
*%

*
*k

*%

Use counters in a program
Perform calculations

Round arithmetic results

Perform an on size error

Use the RETURN-CODE Register



. o 7.1 Objectives

MICR
FOCU

After completing this chapter, you utilize structured programming
constructs in your COBOL programs. Specifically, you will be able
to:

» Code sequence, selection, and iteration structures in COBOL

* Remove GO TO statements from your programs

» Create COBOL code which is readable and maintainable

* Recognize and correct unstructured code

e Call a separate COBOL module using CALL, USING and
LINKAGE

* VS COBOL II Specifics

Page 7-1



¢ ' o 7.2 Topics to be Covered

N Advantages of structured COBOL
NFElements of structured COBOL

N\ Sequence, selection, iteration

N\ Readability

N\ Modularity

NCALL Statement

N Linking a subprogram

Page 7-2



o o 7.2.1 Advantages of Structured COBOL

CR
FOCU

N Encourages developmental discipline
NProgram is more readable

N Program logic is easier to follow

N Program is more easily maintained

N Program is better documented

\ Studies show productivity increase of 70 -
300 percent

\Testing is easier

~«Bach part can be tested separately

Page 7-3



”~ o 7.2.2 Elements of Structured COBOL

CR
FOCU

NThree control logic structures
«Sequence
«xSelection

X

+*[teration

N One entry and one exit
#xGO TO only used to branch to EXIT statement

N Modularity (programs, subprogrames,
paragraphs

Page 7-4



e

MICRO
FOCUS

7.2.3 Sequence

NProgram statements are executed in

sequence

PERFORM

PERFORM

PERFORM

Page 7-5



e

MICRO
FOCUS

7.2.4 Selection

N Choice between two (and only two) actions,
based on a condition

True

:\?

False

» PERFORM

Page 7-6



}

micro ] 2 5 [teration

NPERFORM UNTIL

PERFORM [

False

O

Page 7-7




o o 7.2.6 Elements of Readability

CR
FOCU

\ Indentation

N\ Descriptive data-names and paragraph-names

N\ Data-names with similar function (like switches
and counters) are grouped together

N Align picture clause

\ Limit one data-name per line in procedure division
\ Place THE and ELSE on separate lines

N Avoid use of NOT

\ Liberally sprinkle comments

\ Blank lines for separation

Page 7-8



}

==
(o]

(1!

wuQ

7.2.7 Examples of Readability
N POOR

IF MALE AND EMPLOYEE ADD 1 TO MALE-EMPLOYEE-CTR, TOTAL-CTR
ELSE IF MALE AND CONTRACTOR ADD 1 TO MALE-CONTRACTOR-CTR, TOTAL-CTR
ELSE IF FEMALE AND EMPLOYEE
ADD 1 TO FEMALE-EMPLOYEE-CTR, TOTAL-CTR
ELSE IF FEMALE AND CONTRACTOR
ADD 1 TO FEMALE-CONTRACTOR-CTR, TOTAL-CTR
ELSE IF NOT CONTRACTOR AND NOT EMPLOYEE
ADD 1 TO OTHER-CTR, TOTAL-CTR.

Page 7-9




MICRO 7.2.77 Examples Of Readablhty
N GOOD

IF MALE AND EMPLOYEE ADD 1 TO MALE-EMPLOYEE-CTR,
TOTAL-CTR.

IF MALE AND CONTRACTOR ADD 1 TO MALE-CONTRACTOR-CTR,
TOTAL-CTR.

IF FEMALE AND EMPLOYEE ADD 1 TO FEMALE-EMPLOYEE-CTR,
TOTAL-CTR.

IF FEMALE AND CONTRACTOR ADD 1 TO FEMALE-CONTRACTOR-CTR,
TOTAL-CTR.

IF NOT CONTRACTOR AND NOT EMPLOYEE ADD 1 TO OTHER-CTR,
TOTAL-CTR.

Page 7-9




o o 7.2.8 Examples of Readability

CR
FOCU

N BETTER

IF MALE AND EMPLOYEE
THEN
ADD 1 TO MALE-EMPLOYEE-CTR TOTAL-CTR
ELSE
IF IF MALE AND CONTRACTOR
THEN
ADD 1 TO MAILE-CONBTRACTOR-CTR TOTAL-CTR
ELSE
IF FEMALE AND EMPLOYEE
THEN
ADD 1 TO FEMALE-EMPLOYEE-CTR TOTAL-CTR
ELSE
IF FEMALE AND CONTRACTOR
THEN
ADD 1 TO FEMALE-CONTRACTOR-CTR TOTAL-CTR
ELSE
IF NOT CONTRACTOR AND NOT EMPLOYEE
THEN
ADD 1 TO OTHER-CTR TOTAL-CTR.

Page 7-10



e

M1
F O

CR
Cu

O
5

7.2.9 Examples of Readability
N BEST

IF MALE AND EMPLOYEE
THEN
ADD 1 TO MALE-EMPLOYEE-CTR
TOTAL-CTR
GO TO 400-COUNT-WORKERS-EXIT.

IF MALE AND CONTRACTOR
THEN
ADD 1 TO MAILE-CONBTRACTOR-CTR
TOTAL-CTR
GO TO 400-COUNT-WORKERS-EXIT.

IF FEMALE AND EMPLOYEE
THEN
ADD 1 TO FEMALE-EMPLOYEE-CTR
TOTAL-CTR
GO TO 400-COUNT-WORKERS-EXIT.

IF FEMALE AND CONTRACTOR
THEN
ADD 1 TO FEMALE-CONTRACTOR-CTR
TOTAL-CTR
GO TO 400-COUNT-WORKERS-EXIT.

IF NOT CONTRACTOR AND NOT EMPLOYEE
THEN
ADD 1 TO OTHER-CTR TOTAL-CTR.

Page 7-11



”~ o 7.3.1 COBOL modules

CR
FOCU

 Static
< Compiled with NODYNAM

k

#+ Linked with calling program in main storage

*

++ Preferred method

*

++ Executes faster than dynamic call

N Dynamic
«x Compiled with DYNAM
«+ Loaded when needed (called)
++ When subprogram called infrequently
<+ When subprogram called infrequently and very large
W

%k
%k %

hen subprogram changes often

++ BExecution slower than static

Page 7-12



'yl‘c o 7.3.2 CALL Statement

R
OCUS

NCALL ‘subprogram-name
{USING data-name(s)}

N Execute a subprogram
N Control given to subprogram
N Parameters can be passed to subprogram

NUpon completion, next statement in calling
program run

\ Can refer to program-id or an ENTRY
Statement

Page 7-13



M I
F O

CR
Cu

O
5

7.3.2 CALL Statement

Calling Program

PROCEDURE DIVISION

CALL ‘PROGRAM?2’.
COMPUTE A=B+C

Called Program

IDENTIFICATION DIVISION
PROGRAM-ID. PROGRAM2.
PROCEDURE DIVISION

GOBACK.

Calling Program

PROCEDURE DIVISION

CALL ‘PROGRAMY’.
COMPUTE Z=X+Y

Called Program

PROCEDURE DIVISION

GOBACK.

Page 7-13



gl
O~
(o1
wuQ

7.3.3 CALL Statement with Parameters

Calling Program

WORKING-STORAGE SECTION.

01 PARM-LIST

05 AMOUNT-PAID PIC 9(5)V99.

05 SALES-CODE  PIC 9(3).
PROCEDURE DIVISION.

CALL ‘PROGRAM?2’
USING PARM-LIST

Called Program

LINKAGE SECTION.

01 PARMS-USED.

05 DOLLARS PIC 9(5).
05 CENTS PIC V99.
05 CODE PIC 9(3).

PROCEDURE DIVISION

USING PARMES-USED.

GOBACK.

Page 7-14



o o 7.3.4 Linking a subprogram

CR
FOCU

//STEPO1 EXEC COBUCL,PARM.COM=‘SXREF,DMAP’
//COB.SYSIN DD DSN=PROGRAMI1,DISP=SHR
//LKED.SYSLMOD DD DSN=LOADLIB(PROGRAM1),DISP=SHR
//*

// STEP02 EXEC COBUCL,PARM.COM=‘SXREF,DMAP’
//COB.SYSIN DD DSN=PROGRAM?2,DISP=SHR
//LKED.SYSLMOD DD DSN=LOADLIB(PROGRAM?2),DISP=SHR
//LKED.SUBPGM DD DSN=LOADLIB,DISP=SHR
//LKED.SYSIN DD *

INCLUDE SUBPGM(PROGRAM]1)

Page 7-15



o o 7.2.13 VS COBOL II - Specifics

CR
FOCU

NImproves readability
«x SET TO TRUE

*
*

* Scope terminators

PERFORM UNTIL with test after
PERFORM UNTIL with test before
INLINE PERFORM

EVALUATE

«x CASE Structure

%
Xk

*

bl
Xk

*

*
b3

*

Xk
*

*

Page 7-16



e 7.2.14 SET TO TRUE

CR
FOCU

N Used with condition names (88-levels)

0S5 END-OF-FILE-SWITCH PIC X VALUE °‘N’.
88 END-OF-FILE VALUE °Y’.

READ INPUT-FILE
AT END
SET END-OF-FILE TRUE.

05 SALES-CODE PIC X(3).
88 JONES VALUE “001°.
88 SMITH VALUE 002’
88 BOND VALUE “003’.

MOVE ‘002° TO SALES-CODE

SET SMITH TO TRUE

Page 7-17



f k o 7.2.15 Scope Terminators

NFacilitate Structure
N Conform more closely to flowchart

N Explicit Terminator

<+ Alternative to Implicit terminator
i A period at the end of a sentence
i An ELSE in a conditional statement

«xDelimit scope of certain statements

Page 7-18



f k o 7.2.15 Scope Terminators

END-ADD END-READ
END-CALL END-RETURN
END-COMPUTE END-REWRITE
END-DELETE END-SEARCH
END-DIVIDE END-START
END-EVALUATEEND-STRING

END-IF END-SUBTRACT
END-MULTIPLY END-UNSTRING
END-PERFORM END-WRITE

Page 7-18



Sl

7.2.16 Scope Terminators

IF MALE AND EMPLOYEE
ADD 1 TO MALE-EMPLOYEE-CTR
TOTAL-CTR
END-ADD
END-IF.
IF MALE AND CONTRACTOR
ADD 1 TO MAILE-CONBTRACTOR-CTR

TOTAL-CTR

END-ADD

END-IF.

IF FEMALE AND EMPLOYEE
ADD 1 TO FEMALE-EMPLOYEE-CTR

TOTAL-CTR

END-ADD

END-IF.

IF FEMALE AND CONTRACTOR

ADD 1 TO FEMALE-CONTRACTOR-CTR
TOTAL-CTR
END-ADD

END-IF.

IF NOT CONTRACTOR AND NOT EMPLOYEE
ADD 1 TO OTHER-CTR TOTAL-CTR.
END-ADD

END-IF.

Page 7-19



e

M1
F O

CR
Cu

O
5

7.2.17 Value of Scope Terminators

IF MALE AND EMPLOYEE
ADD 1 TO MALE-EMPLOYEE-CTR
TOTAL-CTR
END-ADD
END-IF.
IF MALE AND CONTRACTOR
ADD 1 TO MAILE-CONBTRACTOR-CTR

TOTAL-CTR

END-ADD

END-IF.

IF FEMALE AND EMPLOYEE
ADD 1 TO FEMALE-EMPLOYEE-CTR

TOTAL-CTR

END-ADD

END-IF.

IF FEMALE AND CONTRACTOR

ADD 1 TO FEMALE-CONTRACTOR-CTR
TOTAL-CTR
END-ADD

END-IF.

IF NOT CONTRACTOR AND NOT EMPLOYEE
ADD 1 TO OTHER-CTR TOTAL-CTR.
END-ADD

END-IF.

Page 7-20



CR
FOCU

. o 7.2.18 PERFORM UNTIL with test after

PERFORM ABC-RT WITH TEST AFTER
UNTIL END-OF-DATA

False

\ True
> > ? —

Page 7-21



. o 7.2.19 PERFORM UNTIL with test before

CR
FOCU

PERFORM ABC-RT WITH TEST BEFORE
UNTIL END-OF-DATA

or
PERFORM ABC-TRN UNTIL END-OF-DATA

i

False

True

Page 7-22



. o 7.2.20 PERFORM UNTIL with test before

CR
FOCU

“No need for separate paragraph

PERFORM UNTIL END-OF-FILE

IF COUNTER-1 IS GREATER THAN 60

PERFORM PRINT-A-PAGE

END-IF

ADD 1 TO COUNTER-1

ADD 1 TO SUB-3

MOVE IP-RECORD TO TBL-3(SUB-3)

READ INPUT-FILE

AT END SET END-OF-FILE TO TRUE

END-PERFORM.

Page 7-23



gl
O~
(o1
wuQ

7.2.21 EVALUATE

NCASE STRUCTURE
Used with 88-levels

EVALUATE SALES CODE
WHEN JONES PERFORM JONES-RTN
WHEN SMITH PERFORM SMITH-RTN
WHEN BOND PERFORM BOND-RTN
WHEN ¢005° PERFORM FIVE-RTN
WHEN OTHER PERFORM OTHER-RTN
END-EVALUATE.

EVALUATE TRUE ALSO TRUE
WHEN MALE ALSO EMPLOYEE
ADD 1 TO MALE-EMPLOYEE-CTR
WHEN MALE ALSO CONTRACTOR
ADD 1 TO MALE-CONTRACTOR-CTR
WHEN FEMALE ALSO EMPLOYEE
ADD 1 TO FEMALE-EMPLOYEE-CTR
WHEN FEMALE ALSO CONTRACTOR
ADD 1 TO FEMALE-CONTRACTOR-CTR
WHEN OTHER
ADD 1 TO OTHER-CTR
END-EVALUATE.

Page 7-24



”~ o 7.2.22 CASE Structure

CR
FOCU

Value Value Value Value

| 2 3 otherwise

Exit
Page 7-24




3

=z
O~

(1!

wuQ

Do exercises on pages 7-16 and 7-17. Do not do the exercise on 7-18.
Create a subprogram structure to print a salesperson phone number on each record in program2.cbl.
#%  Changes required for program2.
f add a PARM-LIST to Working-Storage with a data-item for the Salescode and Phone
i add a CALL....USING statement in your Procedure Division calling PROGRAM3.
i add a 10 byte numeric field in your Working-Storage SALES-REPORT record for the phone number
f be sure to move the phone number from your PARM-LIST to your output record
f if it doesn’t already, have your Display statement Display your REPORT RECORD, not your DETAIL RECORD.
#  Coding required for program3.
i youmay clone an existing program like program?2.
i this program accesses the personnl file only, so replace all SELECT statements with:
SELECT PERSONNL-FILE-IN ASSIGN TO UT-S-SYSUT2
ORGANIZATION IS LINE SEQUENTIAL.
i replace FD’s with:
FD PERSONNL-FILE-IN
LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
RECORD CONTAINS 43 CHARACTERS

BLOCK CONTAINS 0 RECORDS
DATA RECORD IS PERSONNL-RECORD.

7.3 Workshop

01 PERSONNL-RECORD PIC X(43).

i your record description will appear as follows:
01 PERSONNEL-RECORD.
05 SALESCODE PIC 9(3) VALUE ZERO.
05 LNAME  PIC X(20).
05 FNAME  PIC X(10).
05 PHONE.
10 ARCODE PIC 9(3).
10 PREFIX PIC 9(3).

10 XCHANGE PIC 9(4).
i code your LINKAGE SECTION and PROCEDURE DIVISION USING statements

i code a very simple PROCEDURE DIVISION to read through the PERSONNL file until it finds a match between the LK-
SALESCODE and the SALESCODE in the PERSONNL file. You will then have a phone number to pass back through
linkage.
i be sure to code a GOBACK when the record has been found.
The programs LISTFIX.CBL and SORTFIX.CBL have a combination of good and poor elements of structured programming. You should fix:
Program-Id’s

*
Ix

*
Ex

Align PIC clauses

*
i*

Properly space and indent the Procedure Divisions P age 7 16-18
Informational after checking LISTEIX.CBL, note how it pulled in a Copybook for a needed record description.

*
E*



#~~ 7.3 Workshop

1. Sequence, Selection and Iteration
2. Iteration

3. Selection

4. Entry and Exit

5. Elements of Readability page 7-8
6.

#+ development discipline

#+  readability

#+ understandable logic flow
#%  easy maintenance

#+  better documentation

#+ increased productivity

#x  easier testing

7.

IF NAME IS EQUAL TO ‘DAVID’ OPEN INPUT INFILE
ADD 1 TO D-CTR LOGFILE
MOVE IN-REC TO WORK-REC MASTER

ELSE OUTPUT NEWMAST
ADD 1 TO A-CTR RPTFILE.
CLOSE OUTFILE.

IF NAME IS EQUAL TO DAVID
AND (D-CTR = 60 OR A-CTR = 1)
MOVE SPACES TO WORK-REC
OUTREC
ADD 1 TO A-CTR.

8. CALL........ USING
Page 7 16-18



}

=z
O~

(1!

wuQ

k%
*
*%
*
k%
*
k%
*
k%
*
k%
*
k%
*
k%
%
k%
*
k%
*
k%
*
k%

*
*k

Describe the steps of the Programming Life Cycle
Describe the function of the four COBOL divisions
List the advantages and disadvantages of COBOL
Describe the purpose of the COBOL compiler
Understand the column structure of COBOL

Use the Micro Focus Workbench to Edit, Syntax Check and
Animate a program

Code an identification division

Code an environment division

Code a data division

Tell whether statements belong in the A-margin or B-margin
Write a record description for a file

Process literals and figurative constants

Describe the mainframe COBOL compiler

Code file 1/0 statements (OPEN, CLOSE, READ, WRITE)
Code special 1/0 statements (ACCEPT, DISPLAY)
Perform basic data transfer (MOVE)

Detect when an end-of-file condition is reached

Create a simple COBOL program using TSO/ISPF, Micro Focus
End the program as needed (GOBACK, STOP RUN)
Compile, link, and test a simple COBOL program
Understand the function of an optimizer

Test data to determine proper action

Perform unconditional branches

Execute sequence, selection and iteration

Perform valid comparisons of data

Validate data for numeric contents

Test logical conditions using AND, OR, or NOT

Use conditional names to clarify and reduce coding

Use switches in a program

Describe testing and debugging tools

Describe testing strategies

Recognize common abend codes

Review......

At this point we should be
able to:

Use counters in a program
Perform calculations

Round arithmetic results

Perform an on size error

Use the RETURN-CODE Register

Understand and apply elements of
structured programming

Describe sequence, selection and iteration

Apply concepts of readability and
modularity

CALL and LINK a subprogram



a7 o 8-1 Objectives

MICR
FOCU

After completing this chapter, you use COBOL to produce reports.
Specifically, you will be able to:

« REDEFINE data areas in the COBOL Program

« INSPECT and alter data

 Use switches to trigger control breaks

 Use line counters and page counters in a program
» Update a master file using input data

 Create an error report

Page 8-1



¢ ' o 8.2 Topics to be Covered

NReport definition, components, and
preparation

N Switches and counters
N Data editing
NINSPECT
NREDEFINES

N Paper positioning

N Report Writer

Page 8-2



¢ ' o 8.2.1 Report Definition

\Pictorial representation of data
N Columns
NRows (or detail lines)

N Categories (or groups or levels)
\ Control breaks

Page 8-3



¢ ' o 8.2.2 Report Components

N Report Heading

NPage Heading with page number

N Control headings (detail line headings)
N Detail Lines

N Control footings

N Page footings

N\ Report footings

Page 8-4



';m' o 8.2.3 COBOL report preparation

CR
OCU

N Switches

N Counters

N Data editing
NINSPECT
NREDEFINES

N Paper positioning

Page 8-5



> o 8.2.4 Switches

CR
FOCU

N True/False
NQor 1
\ cTa or cFa
N8R-LEVELS
01 program-counters
05 SW-END-OF-DATA PIC X VALUE °‘N’.
88 END-OF-FILE VALUE °Y’.
05 SW-ERRORS-IN-PROCESSING PIC 9 VALUE 0.
88 ERRORS-IN-PROCESSING VALUE 1.
05 SW-CONTROL-BREAK PIC X VALUE ‘N’.

88 CONTROL-BREAK VALUE °Y".

Page 8-6



”~ o 8.2.5 Switches

CR
FOCU

NPage counter
«xUsually PIC 9(4)

N Line counter
AUsually PIC 9(2)
88 level of 45 or 60 (lines per page)

Page 8-7



o o 8.2.6 Data Editing

CR
FOCU

N Additional PICTURE clauses
*B,.$-+CRDB Z *

N Occurs with MOVE

N Two kinds of data editing

++Insertion
4B,.$-+CRDBZ *
«+Suppression and replacement
wxf * 0§+ -

Page 8-8



o o 8.2.7 Data Editing Characters

CR
FOCU

B
~+Space character will appear

N

5

«xComma will appear
N,

«xPeriod will appear

Page 8-9



o o 8.2.7 Data Editing Characters

CR
FOCU

ITEM-1 PIC 9(7) VALUE 6330359.
ITEM-2 PIC 999B9999
ITEM-3  PIC 999,9999
ITEM-4  PIC 999.9999

MOVE ITEM-1 TO ITEM-2, ITEM-3, ITEM-4

633 0359 ITEM-2
633,0359 ITEM-3

633.0359 ITEM-4

Page 8-9



'%'g% o 8.2.8 Data Editing Characters
N

«xDollar sign will appear

* > . . . .
+*When a value 1s positive, space will appear

«xWhen a value is negative, negative sign will
appear

When a value 1s positive, a positive sign will
appear
When a value 1s negative, negative sign will
appear

Page 8-10



e

MICR
FOCU

ITEM-1
ITEM-2
ITEM-3
ITEM-4

PIC
PIC
PIC
PIC

o 8.2.8 Data Editing Characters

9(7) VALUE +4230660.

$9(7)
9(7)+
-9(7)

MOVE ITEM-1 TO ITEM-2, ITEM-3, ITEM-4

$4230660
4230660+

4230660

ITEM-2

ITEM-3

ITEM-4

Page 8-10



'%'g% o 8.2.9 Data Editing Characters
N Credit(s) CR

«xWhen value is positive, two spaces appear

«xWhen value is negative, CR appears
\ Debit(s) DB
«+When a value is positive, two spaces appear

«+When a value is negative, DB appears

Page 8-11



o o 8.2.9 Data Editing Characters

CR
FOCU

ITEM-1
ITEM-2
ITEM-3
ITEM-4

PIC
PIC
PIC
PIC

9(3) VALUE -123.
$9(5)CR

$9(5)DB

+$9(3).99

MOVE ITEM-1 TO ITEM-2, ITEM-3, ITEM-4

$00123CR  1rem=2

$00123db
-$123.00

ITEM-3

ITEM-4

Page 8-11



o o 8.2.10 Data Editing Characters

CR
FOCU

N Suppressing - Z
«+Digit-suppressing character
NProtecting - *

«xProtects leading digits when printing checks

Page 8-12



o o 8.2.10 Data Editing Characters

CR
FOCU

ITEM-1 PIC 9(2)V99 VALUE ZEROS.
ITEM-2 PIC ZZ7Z.77
ITEM-3 PIC ZZZZ.99
ITEM-4 PIC $ZZ,279+
ITEM-5 PIC  S***99

MOVE ITEM-1 TO ITEM-2, ITEM-3, ITEM-4, ITEM-5

bqi)qi)qi)bbb ITEM-2
b434343.00 ITEM-3
Sbbbbo+ [TEM-4

$ R OO ITEM-5

Page 8-12



m 8.2.11 Data Editing Characters
N
«xFloating dollar sign
N+

«xFloating plus sign
N

«xFloating minus sign

Page 8-13



o o 8.2.11 Data Editing Characters

CR
FOCU

ITEM-1 PIC 9(3) VALUE -123.
ITEM-2 PIC $$$$.99+
ITEM-3 PIC $$$$$DB
ITEM-4 PIC +++++.99

MOVE ITEM-1 TO ITEM-2, ITEM-3, ITEM-4

$123.00- ITEM-2
b$123DB ITEM-3

b-123.00 ITEM-4

Page 8-13



et

M I
F O

(1!

R
U

O
5

3.2.12 INSPECT

INSPECT identifier-1

LITERAL-1

REPLACING
[LEADING]
[FIRST]

BY LITERAL-2

[ALL]

[UNTIL FIRST]

\Field examined left to right 1 character at a

time

N Characters are replaced

Page 8-14



Ve 8.2.12 INSPECT

MICR
FOCU

(1!

INSPECT DATE-FIELD REPLACING LEADING SPACE BY 0

BEFORE AFTER
b10190 010190

INSPECT REPORT-DATE REPLACING ALL ‘- BY ¢/

BEFORE AFTER
12-25-90 12/25/90

Page 8-14



¥+ 8.2.13 REDEFINES

R
OCUS

N\ Gives another name and description to data

NIn File Section, use DATA RECORDS
ARE and an additional O1

NImmediately follow data-name with same
level number and REDEFINES clause

\Same storage area used

Page 8-15



v 8.2.13 REDEFINES

CR
FOCU

01 DOLLARS PIC 9(4)V99.
01 DRULAS PIC 9(5)V9.
REDEFINES DOLLARS.

05 PHONE-NUMBER  PIC X(12).
05 PHONE-DETAIL REDEFINES PHONE-NUMBER.
10 OPEN-PAREN  PIC X.
10 AREA-CODE PIC 9(3).
10 CLOSE-PAREN  PIC X.
10 EXCHANGE PIC 9(3).
10 NUMBERS PIC 9(4).

Page 8-15



et

M1

wicro 8.2.14 Paper positioning

\Single space
N Double space
NTriple space
N Overstriking

«xWorks on impact printers - laser printers
unpredictable

NTop of form

Page 8-16



hwicxo 8.2.15 Spacing Paper

NWRITE record-name AFTER ADVANCING

WRITE OUTPUT-RECORD AFTER ADVANCING 1 LINE.
WRITE OUTPUT-RECORD AFTER ADVANCING 2 LINES.
WRITE OUTPUT-RECORD AFTER ADVANCING 3 LINES.
WRITE OUTPUT-RECORD AFTER ADVANCING O LINE.

Page 8-17



wexe 8.2.16 Positioning Paper to Top of Form

CR
FOCU

N Special Names
NCOl

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
OBJECT-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
SPECIAL-NAMES.

COl IS TOP-OF-PAGE.
INPUT-OUT SECTION.
FILE-CONTROL.

SELECT SALES-FILE-IN ASSIGN TO UT-S-SALESIN
PROCEDURE DIVISION.

WRITE OUTPUT-RECORD

Page 8-18



~ 8.3 Workshop

Do exercises on pages 8-24 and 8-25. Do not do the exercise on 8-26.

Formalize the reporting in program?2.cbl so it appears exactly as shown below!!!.

~  Formal underlined LAST NAME FIRST NAME PHONE CODE  AMOUNT

headers

312)569-3287 065
BARBARA 800)844-1111 006
© Formatied data DONALD 212)555-1212 067
shone mumbers and MINNIE 800)844-1111 006
B f— OPHELIA 212)555-1212 664
per page. HERMAN 212)555-1212 064
XAVIER 212)555-1212 064
SANDY 312)569-3287 065

800)844-1111

N Footer line with B B L L L L L L L

page number

RAFAEL

UINCENT

TRUDY

CHARLES :
N Enddetails line ~  [iSSE |piuiieke ittt
BTOTAL SALES - $30587.44
N\ Formatted display of REPORT ERRORS - 1

total sales and the |
error report

Page 8 24-26



~ 8.3 Workshop

1. Report Heading, Page Heading, Control Headings, Detail Lines, Control Footings, Page
Footings, Report Footings.

2. 88 levels

3. 710-NEW-PAGE THRU 710-NEW-PAGE-EXIT
ELSE
NEXT SENTENCE

4. Report Writer

5. Working-Storage

6. INSPECT LOCATION REPLACING ALL “DISTRICT OF COLUMBIA” BY “D.C.”
item2 |2|7|7|7]1]0|8|+]

item3 | [$|2],[7[7]7],[1|0]8]
itemd [ *[2(7 |,|7|7|1].10]8]

Page 8 24-26



~~ 8.3 Workshop
MICRO
FOCUS
PROCESS-RECORD.
IF NOT ZERO-AMOUNT
IF DR-SALESCODE NUMERIC
Which is more readable.......... ADD DR-AMOUNT TO TOTAL-AMOUNT-ACCUMULATOR
MOVE DR-SALESCODE TO LK-SALESCODE
) CALL 'PROGRAM3'
This........ USING PARM-LIST
MOVE DR-LASTNAME TO DL-LASTNAME
MOVE DR-FIRSTNAME TO DL-FIRSTNAME
MOVE LK-PHONE TO SR-PHONE
MOVE SR-ARCODE TO DL-ARCODE

PROCEDURE DIVISION. MOVE SR-PREFIX TO DL-PREFIX
MAIN-ROUTINE. MOVE SR-XCHANGE TO DL-XCHANGE
OPEN INPUT SALES-FILE-IN MOVE DR-SALESCODE TO DL-SALESCODE
OUTPUT SALES-FILE-OUT. MOVE DR-AMOUNT TO DL-AMOUNT
READ SALES-FILE-IN INTO DATA-RECORD. PERFORM HEADER-ROUTINE
WRITE REPORT-RECORD FROM HEADING-1. WRITE REPORT-RECORD FROM DETAIL-LINE
DISPLAY REPORT-RECORD. ADD 1 TO LINE-COUNTR
WRITE REPORT-RECORD FROM HEADING-2. DISPLAY REPORT-RECORD
DISPLAY REPORT-RECORD. ELSE
MOVE 2 TO LINE-COUNTR. ADD 1 TO ERROR-COUNTER
MOVE 1 TO PAGE-COUNTR. MOVE 8 TO RETURN-CODE.
PERFORM PROCESS-RECORD THRU PROCESS-RECORD-EXIT READ SALES-FILE-IN INTO DATA-RECORD
UNTIL END-OF-FILE-SWITCH ="Y". AT END
WRITE REPORT-RECORD FROM FOOTER-2. MOVE 'Y' TO END-OF-FILE-SWITCH.
DISPLAY REPORT-RECORD. PROCESS-RECORD-EXIT.
MOVE TOTAL-AMOUNT-ACCUMULATOR TO DL2-AMOUNT.
WRITE REPORT-RECORD FROM DETAIL-LINE2. HEADER-ROUTINE.
DISPLAY REPORT-RECORD. IF LINE-COUNTR IS GREATER THAN 10
MOVE ERROR-COUNTER TO DL3-ERROR. MOVE PAGE-COUNTR TO FT-PAGE-NUMBER
WRITE REPORT-RECORD FROM DETAIL-LINE3. WRITE REPORT-RECORD FROM FOOTER-1
DISPLAY REPORT-RECORD. DISPLAY REPORT-RECORD
MOVE PAGE-COUNTR TO FT-PAGE-NUMBER WRITE REPORT-RECORD FROM HEADING-1
WRITE REPORT-RECORD FROM FOOTER-1. DISPLAY REPORT-RECORD
DISPLAY REPORT-RECORD. WRITE REPORT-RECORD FROM HEADING-2
CLOSE SALES-FILE-IN DISPLAY REPORT-RECORD
SALES-FILE-OUT. MOVE 2 TO LINE-COUNTR
GOBACK. ADD 1 TO PAGE-COUNTR.

HEADER-ROUTINE-EXIT.
Page 8 24-26



~~ 8.3 Workshop

PROCEDURE DIVISION.
000-MAIN-ROUTINE.
OPEN INPUT SALES-FILE-IN
OUTPUT SALES-FILE-OUT.
PERFORM 900-HOUSEKEEPING-ROUTINE.
PERFORM 100-PROCESS-RECORD-ROUTINE
UNTIL END-OF-FILE-SWITCH ="Y".
PERFORM 950-FINISH-REPORT-ROUTINE.
CLOSE SALES-FILE-IN
SALES-FILE-OUT.
GOBACK.

100-PROCESS-RECORD-ROUTINE.
IF NOT ZERO-AMOUNT
IF DR-SALESCODE NUMERIC
ADD DR-AMOUNT TO TOTAL-AMOUNT-ACCUMULATOR
MOVE DR-SALESCODE TO LK-SALESCODE
CALL 'PROGRAM3'
USING PARM-LIST
PERFORM 200-MOVE-FIELD-ROUTINE
PERFORM 400-HEADER-ROUTINE
WRITE REPORT-RECORD FROM DETAIL-LINE
ADD 1 TO LINE-COUNTR
DISPLAY REPORT-RECORD
ELSE
ADD 1 TO ERROR-COUNTER
MOVE 8 TO RETURN-CODE.
PERFORM 999-READ-ROUTINE.

200-MOVE-FIELD-ROUTINE.
MOVE DR-LASTNAME TO DL-LASTNAME.
MOVE DR-FIRSTNAME TO DL-FIRSTNAME.
MOVE LK-PHONE TO SR-PHONE.
MOVE SR-ARCODE TO DL-ARCODE.
MOVE SR-PREFIX TO DL-PREFIX.
MOVE SR-XCHANGE TO DL-XCHANGE.
MOVE DR-SALESCODE TO DL-SALESCODE.
MOVE DR-AMOUNT TO DL-AMOUNT.

400-HEADER-ROUTINE.

IF LINE-COUNTR IS GREATER THAN 10
MOVE PAGE-COUNTR TO FT-PAGE-NUMBER
WRITE REPORT-RECORD FROM FOOTER-1
DISPLAY REPORT-RECORD
WRITE REPORT-RECORD FROM HEADING-1
DISPLAY REPORT-RECORD
WRITE REPORT-RECORD FROM HEADING-2
DISPLAY REPORT-RECORD
MOVE 2 TO LINE-COUNTR
ADD 1 TO PAGE-COUNTR.

900-HOUSEKEEPING-ROUTINE.
READ SALES-FILE-IN INTO DATA-RECORD.
WRITE REPORT-RECORD FROM HEADING-1.
DISPLAY REPORT-RECORD.
WRITE REPORT-RECORD FROM HEADING-2.
DISPLAY REPORT-RECORD.
MOVE 2 TO LINE-COUNTR.
MOVE 1 TO PAGE-COUNTR.

950-FINISH-REPORT-ROUTINE.
WRITE REPORT-RECORD FROM FOOTER-2.
DISPLAY REPORT-RECORD.
MOVE TOTAL-AMOUNT-ACCUMULATOR TO DL2-AMOUNT.
WRITE REPORT-RECORD FROM DETAIL-LINE2.
DISPLAY REPORT-RECORD.
MOVE ERROR-COUNTER TO DL3-ERROR.
WRITE REPORT-RECORD FROM DETAIL-LINE3.
DISPLAY REPORT-RECORD.
MOVE PAGE-COUNTR TO FT-PAGE-NUMBER
WRITE REPORT-RECORD FROM FOOTER-1.
DISPLAY REPORT-RECORD.

999-READ-ROUTINE.
READ SALES-FILE-IN INTO DATA-RECORD
AT END
MOVE "Y' TO END-OF-FILE-SWITCH.

Page 8 24-26



}

=z
O~

(1!

wuQ

*
*k
*
%k
k
*k
*
*k
*k

*
*k

*%
*
k%
*
*%
*
k%
%
k%
*
k%
*
k%
*
k%
*
k%
*
k%
*%
%
k%
*
k%
*
*%

*
k%

Describe the steps of the Programming Life Cycle
Describe the function of the four COBOL divisions
List the advantages and disadvantages of COBOL
Describe the purpose of the COBOL compiler
Understand the column structure of COBOL

Use the Micro Focus Workbench to Edit, Syntax Check and
Animate a program

Code an identification division

Code an environment division

Code a data division

Tell whether statements belong in the A-margin or B-margin
Write a record description for a file

Process literals and figurative constants

Describe the mainframe COBOL compiler

Code file 1/0 statements (OPEN, CLOSE, READ, WRITE)
Code special 1/0 statements (ACCEPT, DISPLAY)
Perform basic data transfer (MOVE)

Detect when an end-of-file condition is reached

Create a simple COBOL program using TSO/ISPF, Micro Focus
End the program as needed (GOBACK, STOP RUN)
Compile, link, and test a simple COBOL program
Understand the function of an optimizer

Test data to determine proper action

Perform unconditional branches

Execute sequence, selection and iteration

Perform valid comparisons of data

Validate data for numeric contents

Test logical conditions using AND, OR, or NOT

Use conditional names to clarify and reduce coding

Use switches in a program

Describe testing and debugging tools

Describe testing strategies

Recognize common abend codes

Review......

At this point we should be
able to:

Use counters in a program
Perform calculations
Round arithmetic results
Perform an on size error
Use the RETURN-CODE Register
Understand and apply elements of structured
programming
Describe sequence, selection and iteration
Apply concepts of readability and modularity
CALL and LINK a subprogram
COBOL Report writing

i REDEFINE data storage

i INSPECT and alter

i Trigger control breaks

i Use line and page counters

i Display summary information



Y 9-1 Objectives

MICR
FOCUS

After completing this chapter, you will be able to build, search and
process data within tables. Specifically, you will be able to:

 Describe basic table terminology

 Use “hard-coded” and “externally populated” tables within a
program

e Use SEARCH and PERFORM VARYING statements to process
tables

» Use subscripts and indexes within a table

Page 9-1



9.2 Topics to be Covered

N Tal
N Tal

vle handling / Terminology

vle coding with REDEFINES

N Building a table (Data and Procedure
Divisions

N Table Lookup

NPERFORM VARYING

NIndexes

NSET statement

NSEARCH [ALL] statement

Page 9-2



fol

M
F

9.2.1 Table Handling

01 SALES-TAX-TABLE.

05 VA-TAX PIC V999 VALUE .045.
05 MD-TAX PIC V999 VALUE .050.
05 CT-TAX PIC V999 VALUE .080.
05 CA-TAX PIC V999 VALUE .055S.

ADD-SALES-TAX.

MOVE ZERO TO SALES-TAX

IF STATE = ‘CT’°

MULTIPLY COST BY CT-TAX GIVING SALES-TAX.
IF STATE = ‘MDD’

MULTIPLY COST BY MD-TAX GIVING SALES-TAX.
IF STATE = ‘VA’

MULTIPLY COST BY VA-TAX GIVING SALES-TAX.
IF STATE = ‘CA’

MULTIPLY COST BY CA-TAX GIVING SALES-TAX.

Page 9-3




f ' 9.2.2 Terminology

NTable

«xList of fields stored side by side with
same format

N Elements

* 1o

++F1elds within a table

N Subscript

* =

++Positive non-zero integer pointing to
element(s) 1n table

Page 9-4



f ' 9.2.2 Terminology
NIndex (COBOL-generated data-item)

«xPositive non-zero integer pointing to
element(s) 1n table

NTable Search

«xMethod of finding element(s) within a
table

NOCCURS

++]dentifies the number of elements

++Cannot be used as 01 level

++VALUE clause cannot be coded with
OCCURS clause (OSVYS)

Page 9-4



fol

M
F

9.2.3 Table coding with REDEFINES

01 SALES-TAX-TABLE.
0S5 SALES-TAX-LIST.

10 FILLER PIC X(5) VALUE .VA045.
10 FILLER PIC X(5) VALUE .MD050.
10 FILLER PIC X(5) VALUE .CT080.
10 FILLER PIC X(5) VALUE .CA055.
01 TAX-TABLE REDEFINES SALES-TAX-TABL.
05 TAXES OCCURS 5 TIMES.
10 STATE PIC X(2).
10 TAX PIC V999.

ADD-SALES-TAX.

MOVE ZERO TO SALES-TAX
IF STATE =‘CT

MULTIPLY COST BY TAX(3) GIVING SALES-TAX.
IF STATE = ‘MD’

MULTIPLY COST BY TAX(2) GIVING SALES-TAX.
IF STATE = ‘VA’

MULTIPLY COST BY TAX(1) GIVING SALES-TAX.
IF STATE = ‘CA’

MULTIPLY COST BY TAX(4) GIVING SALES-TAX.

Page 9-5




f I 9.2.4 Building a Table (Data Division)

FD SALES-FILE
01 SALES-TAX-RECORD

WORKING-STORAGE SECTION

01 TAX-TABLE-SW PIC X VALUE ‘N°.
88 TAX-TABLE-IS-FULL VALUE ‘Y".
01 TAX-TABLE-SW PIC X VALUE ‘N’.
88 TAX-TABLE-IS-FULL VALUE ‘Y’.

01 TAX-TABLE.

05 TAXES OCCURS 4 TIMES.

10 STATE PIC X(2).

10 TAX PIC V999.
01 TABLE-SUB PIC S94) VALUE 1 COMP.
01 STATE-CODE-SW PIC X VALUE ‘N’.

88 STATE-CODE FOUND VALUE ‘Y’.

VA045
MDO050
CT080
CA055

Page 9-6




}

=z
O~

(1!

wuQ

9.2.4 Building a Table (Procedure Division)

PERFORM P200-LOAD-TABLE
THRU P-200-LOAD-TABLE-EXIT

UNTIL TAX-TABLE-IS-FULL
OR END-OF-SALE-FILE.

P100-READ-SALES-TAX.
READ SALES-TAX-FILE

P100-READ-SALES-TAX-EXIT.

EXIT.

P200-LOAD-TABLE.
MOVE SALES-TAX-RECORD TO TAXES(TABLE-SUB).

ADD 1 TO TABLE-SUB
IF TABLE-SUB > 4

THEN
MOVE ‘Y’ TO TAX-TABLE-SWITCH.

PERFORM P100-READ-SALES-TAX
THRU P100-READ-SALES-TAX-EXIT.

PERFORM P100-READ-SALES-TAX VA045
THRU P100-READ-SALES-EXIT MDO050
CTO080

CAO055

AT END MOVE ‘Y’ TO SALES-TAX-FILE-SWITCH.

Page 9-7



fol

M
F

9.2.6 Table Lookup

N\ Table search until match is found

«x Endless loop prevented if not match
i UNTIL TABLE-SUB >4

N As table grows in size
«x Increase OCCURS to new size
«x May need to enlarge size of table subscript

++ May need to change termination value for
perform

N No other program changes may be
necessary

Page 9-8



}

=z
O~

(1!

wuQ

9.2.6 Table Lookup

01 TAX-TABLE.

05 TAXES OCCURS 5 TIMES.
10 STATE PIC X(2).
10 TAX PIC V999.

01 TABLE-SUB

MOVE ‘N’ TO STATE-CODE-SWITCH
MOVE 1 TO TABLE-SUB
PERFORM P400-SEARCH-TABLE
THRU P400-SEARCH-TABLE-EXIT
UNTIL STATE-CODE-FOUND
OR TABLE-SUB > 4.

P400-SEARCH-TABLE.
IF SALES-STATE = STATE(TABLE-SUB)
THEN
MOVE ‘Y’ TO STATE-CODE-SWITCH

MOVE TAX(TABLE-SUB) TO SALES-TAX.

ADD 1 TO TABLE-SUB
P400-SEARCH-TABLE-EXIT.
EXIT.

PIC S94) VALUE 1 COMP.

Page 9-8




f 9.2.7 PERFORM VARYING

PERFORM Paragraph-name [THRU paragraph-name-2]
| VARYING Field-1 {num-literal} BY {num-literal}
{Field-2} {Field-3}
[UNTIL condition]

MOVE ‘N’ TO STATE-CODE-SWITCH
PERFORM P400-SEARCH-TABLE
THRU P400-SEARCH-TABLE-EXIT
VARYING TABLE-SUB FROM 1 BY 1
UNTIL STATE-CODE-FOUND
OR TABLE-SUB > 4.

Page 9-9



f I 9.2.8 Indexes

\Deﬁne unique index name

<+ Follows INDESED BY in OCCURS clause
«x No Working Storage Definition

N Used instead of subscripts

01 TAX-TABLE
05 TAXES OCCURS 4 TIMES
INDEXED BY TAX-INDEX.
10 STATE PIC X(2).
10 TAX PIC V999.

Page 9-10



' I 0.2.9 SET Statement

\Used to initialize INDEX values

N\ Used to change INDEX values

SET TAX-INDEX
SET TAX-INDEX
SET TAX-INDEX
SET TAX-INDEX
SET TAX-INDEX

TO 1.

TO FIELS-S.
UP BY S.
DOWN BY 5.

DOWN BY FIELD-S.

Page 9-11



' I 0.2.10 SEARCH Statement

N Searc!

hes table sequentially until

N condition satisfied

END (end of table) 1s reached

N INDEX is automatically incremented
N INDEX is required

N Must SET table index before SEARCH
N AT END option processes no match

N TABLE-NAME specifies data-item with
OCCURS

Page 9-12



' I 0.2.10 SEARCH Statement

SEARCH Table-Name [VARYING Index-Name]
[AT END...... ]
[WHEN condition ...]

SET TAX-INDEX TO 1.
SEARCH TAXES-TABLE
AT END PERFORM P600-NO-MATCH
THRU P600-NO-MATCH-EXIT
WHEN SALES-STATE = STATE(TAX-INDEX)
MOVE TAX(TAX-INDEX) TO SALES-TAX.

Page 9-11



' I 0.2.11 SEARCH ALL Statement

N Searches table using binary searc

«x Start at midpoint of table

<+ Is WHEN condition satisfied

« If yes, process WHEN True path
<+ Is WHEN data > current value

<+ If Yes, start at 1/4 table point

*

#+ If No, start at 3/4 point

*

\ Table must be stored in ascending or
descending order

N INDEX is required

N Do not have to SET table index before
SEARCH

Page 9-13



' I 0.2.11 SEARCH ALL Statement

SEARCH ALL Table-Name [VARYING Index-Name]
[AT END...... ]
[WHEN condition ...]

01 TAX-TABLE
05 TAXES OCCURS 4 TIMES
ASCENDING KEY IS STATE
INDEXED BY TAX-INDEX.
10 STATE PIC X(2).
10 TAX PIC V999.

SEARCH ALL TAXES-TABLE
AT END PERFORM P600-NO-MATCH
THRU P600-NO-MATCH-EXIT
WHEN SALES-STATE = STATE(TAX-INDEX)
MOVE TAX(TAX-INDEX) TO SALES-TAX.

Page 9-14



f 9.2.12 OCCURS DEPENDING ON

OCCURS integer-1 TO integer-2
DEPENDING ON data-item

01 EMPLOYEE-REC
05 YEAR-TO-DATE-PAYROLL.
10 YEAR PIC 9(2).
10 MONTH PIC 9(2).
05 PAYROLL-TABLE OCCURS 1TO 12 TIMES
DEPENDING ON MONTH
INDEXED BY MONTH-INDEX.
10 HOURS PIC 9(2)V99.
10 OVERTIME PIC V999,

Page 9-15



' ' 9.2.13 Two-dimensional Tables
\OCCURS within an OCCURS

N Allows multiple levels of data storage

< Accounting cross-tabulation

«x Calendar and date cycle processing
\ Reference specific occurrences in table
with field(1dx-1,1dx-2)
N\ Utilize PERFORM within PERFORM
«+ Load Table

«x Process table occurances

Page 9-16



f I 9.2.13 Two-dimensional Tables (Data)

01 EMPLOYEE-PAYROLL-90-94
05 YEAR-DATA OCCURS 5 TIMES
INDEXED BY YEAR-IDX.
10 YEAR PIC 9(02).
10 MONTH-DATA OCCURS 12 TIMES
INDEXED BY MONTH-IDX.

15 MONTH PIC X(03).
15 MONTH-HOURS-TOTAL PIC 9(07)V9.
15 MONTH-OT-TOTAL PIC 9(07)V9.

15 MONTHLY-SALARIES-TOTAL PIC 9(09)V99.

Page 9-16



f ' 9.2.13 Two-dimensional Tables (Procedure)

000-MAIN-LINE.

PERFORM 100-LOAD-YEAR
THRU 100-LOAD-YEAR-EXIT
VARYING YEAR-IDX...
UNTIL. ..
100-LOAD-YEAR
MOVE INPUT-YEAR TO YEAR(YEAR-IDX)

PERFORM 200-LOAD-MONTH
THRU 200-LOAD-MONTH-EXIT
VARYING MONTH-IDX ...
UNTIL ...

200-LOAD-MONTH-TABLE
MOVE INPUT-MONTH TO MONTH(YEAR-IDX,MONTH-IDX).
ADD INPUT-HOURS TO
MONTH-HOURS-TOTAL(YEAR-IDX,MONTH-IDX).

Page 9-16



