
Generated Bookmap

.
.

INSTRUCTOR HANDBOOK
INSTRUCTOR-LED TRAINING

.
Course Version:
Course Duration:
Material Number:

© Copyright . All rights reserved. iii

iv © Copyright . All rights reserved.

Contents

vii Course Overview

1 Unit 1: Generated Learning Group

2 Lesson: Generated Learning Object
13 Exercise 1: Create a Dynamic Drop-down List Using Microsoft

Excel VBA
10 Minutes

21 Exercise 2: Create a Button to Transfer Selections Using
Microsoft Excel VBA

10 Minutes

29 Exercise 3: Using Microsoft Excel VBA with Check Boxes for
Filtering (Optional)

10 Minutes

© Copyright . All rights reserved. v

vi © Copyright . All rights reserved.

Course Overview

TARGET AUDIENCE
This course is intended for the following audiences:

© Copyright . All rights reserved. vii

viii © Copyright . All rights reserved.

UNIT 1 Generated Learning Group

Lesson 1

Generated Learning Object 2
Exercise 1: Create a Dynamic Drop-down List Using Microsoft Excel VBA 13
Exercise 2: Create a Button to Transfer Selections Using Microsoft Excel VBA 21
Exercise 3: Using Microsoft Excel VBA with Check Boxes for Filtering (Optional) 29

UNIT OBJECTIVES
● Extend workbook display options with functions and Microsoft Excel VBA

© Copyright . All rights reserved. 1

Unit 1
Lesson 1

2
Generated Learning Object

LESSON OVERVIEW

LESSON OBJECTIVES
After completing this lesson, you will be able to:

● Extend workbook display options with functions and Microsoft Excel VBA

Functions and VBA
The Add-in also contains a set of functions that you can use to build formulas. You can use these
functions to include data and metadata of data sources into your analysis. For example, you can
insert information fields on data source properties, display the measure filter or list the variables
of a data source. With the SAPGetData function, you can also define measure values for certain
member combinations.

A Microsoft Excel formula for Analysis consists of a function and references to the data source,
measures and/or dimensions. You can use the text or the key of an object to use it as reference.
You can also use a cell value like B10 as reference.

The formula alias of a data source is displayed and can be changed in the data source properties
on the Components tab in the design panel. For measures, dimensions and their members text
references are better to read, but if you want to create a multi-language enabled analysis or there
are duplicate texts in the meta data of your data source, you should reference these objects with
their keys.

You can also use these functions in VBA macros.

Macros
Analysis contains API (Application Programming Interface) methods that can be used in VBA
macros that are embedded in Microsoft Office Excel workbooks. Macros are created in the Visual
Basic Editor. The Visual Basic Editor can be used to write and edit a macro that is attached to a
Microsoft Office Excel macro enabled workbook. The macros can be connected to UI elements
that are available on the Developer tab in the menu.

Note:
In Microsoft Excel 2003, you can find the UI elements in the Forms toolbar. You can
also use the Analysis functions for creating formulas in VBA macros. Microsoft Office
documentation provides information about creating and using VBA macros. The
following section describes the Analysis API methods.

The following API methods are available in Analysis.

2 © Copyright . All rights reserved.

API Methods in Analysis

● SAPAddMessage: Define messages and add them to the standard message dialog

● SAPCallMemberSelector: Calll the standard input help (member selector) from the worksheet

● SAPExecuteCommand: Use this API method as a generic command to execute commands
such as hide/show ribbon components, refresh, and so on.

● SAPExecutePlanningFunction: Execute Integrated Planning functions (See the BOAN20 class)

● SAPExecutePlanningSequence: Execute Integrated Planning sequences

● SAPGetCellInfo: Define a command to get information on a crosstab cell such as dimensions
and selections

● SAPGetProperty: Read properties of a data source or a workbook such as whether the data
source is input ready, for example

● SAPLogon: Trigger a logon to a system for a specified data source

● SAPMoveDimension: Define the position of a dimension in the crosstab, swap the dimension
with another one or position a dimension relative to another one.

● SAPSetFilter: Define which members of a dimension should be filtered.

● SAPSetRefreshBehaviour: Use different API methods one after the other without the result set
being refreshed and without the message dialog being shown

● SAPSetVariable: Define values for input-ready BW variables (prompts). If you want to set
multiple variables, you can use the PauseVariableSubmit command with the
SAPExecuteCommand method.

SAPCallMemberSelector

With this API method, you can call the standard input help (member selector) from the
worksheet. The standard input help is the dialog that is used for filtering in Analysis. If you define
the ReferenceCell parameter, the inplace selector is called. The in place selector is a smaller
version of the member selector. You can use it to select members of a dimension, but you cannot
change how members are displayed in the selector, for example to change the display from key to
text.

SAPCallMemberSelectorFilter Example

Dim lResult As Variant
lResult= Application.Run("SAPCallMemberSelector", "DS_1", "FILTER",
"0MATERIAL")
The member selector for dimension 0MATERIAL is displayed, and you can select the members
you need. You can also select a range of members or change how the members are displayed in
the selector.

SAPCallMemberSelectorInplace with Single Selection Example

Dim lResult As Variant
lResult= Application.Run("SAPCallMemberSelector", "DS_1", "FILTER",
"0MATERIAL",
ActiveCell, "SINGLE")

Lesson: Generated Learning Object

© Copyright . All rights reserved. 3

The inplace selector for dimension 0MATERIAL is displayed in single selection mode in the active
cell, and you can select the member you need.

SAPExecuteCommand

You can use this API method as a generic command to execute the commands described below.
(numbered 1-5)

The system returns one of the following output parameters for each command execution:

● 0 = execution failed

● 1 = execution successful

1. PauseVariableSubmit

Use this command to pause the execution of variables using the parameter "On". To end the
pausing, use the command with parameter "Off".

When PauseVariableSubmit is in mode "On", all Analysis formulas and most of the Analysis
macros will not be executed. The following macros will be executed: SAPAddMessage,
SAPSetVariable, PauseVariableSubmit "Off".

2. Hide/Show

Use this command to hide and show Analysis UI components for a workbook. You can use the
command for the types "Ribbon", "ContextMenu" and "TaskPane".

You can hide the complete ribbon ("All") and show it again ("Default"). For the context menu, you
can hide the single refresh or the complete menu and show the complete menu again. For the
design panel, you can hide the Analysis and the Components tab and show the complete design
panel again.

The following commands are supported:

● Application.Run("SAPExecuteCommand", "Hide", "Ribbon", "All")
● Application.Run("SAPExecuteCommand", "Show", "Ribbon", "Default")
● Application.Run("SAPExecuteCommand", "Hide", "ContextMenu",

"Refresh_Single")
● Application.Run("SAPExecuteCommand", "Hide", "ContextMenu", "All")
● Application.Run("SAPExecuteCommand", "Show", "ContextMenu", "Default")
● Application.Run("SAPExecuteCommand", "Hide", "TaskPane", "Analysis")
● Application.Run("SAPExecuteCommand", "Hide", "TaskPane", "Components")
● Application.Run("SAPExecuteCommand", "Show", "TaskPane", "Default")

3. ShowPrompts

Use this command to display the prompts dialog. You can call the workbook or data source
prompts dialog. To call the dialog, the data source(s) need to be refreshed.

Show prompts dialog for one data source

lResult= Application.Run("SAPExecuteCommand", "ShowPrompts", "DS_1")

Unit 1: Generated Learning Group

4 © Copyright . All rights reserved.

If you execute this command, the prompts dialog for DS_1 is displayed. This is only possible if the
variables are not merged in the workbook.

Show prompts dialog for all data sources

lResult= Application.Run("SAPExecuteCommand", "ShowPrompts", "ALL")
If you execute this command, the prompts dialog for all data sources in the workbook is
displayed.

4. Refresh

Use this command to initially refresh the data in the workbook. You can specify one data source
or one planning object as a parameter that should be refreshed. If you do not enter a parameter
or you enter the string 'ALL' as parameter, all data sources and planning objects will be refreshed.
If you execute this command for a data source which is already refreshed, all corresponding
crosstabs are redrawn.

Additionally, you can refresh a list of data sources.

Refresh one data source

Dim lResult As Long
lResult= Application.Run("SAPExecuteCommand", "Refresh", "DS_1")
If you execute this command, the data for data source DS_1 is refreshed.

Refresh all data sources

Dim lResult As Long
lResult= Application.Run("SAPExecuteCommand", "Refresh")
If you execute this command, the data of all data sources are refreshed.

Refresh a list of data sources

Dim lResult As Long
lResult= Application.Run("SAPExecuteCommand", "Refresh"; "DS_1;DS_2")
If you execute this command, the data of data source DS_1 and DS_2 is refreshed.

5. Refresh Data

Use this command to refresh all or defined data sources in the workbook. You can specify the
data sources that should be refreshed. If you do not enter a parameter or you enter the string
'ALL' as parameter, all data sources will be refreshed. If you execute this command for a data
source, the corresponding data is updated from the server and the crosstabs are redrawn.

Refresh two defined data sources

Dim lResult As Long
lResult= Application.Run("SAPExecuteCommand", "RefreshData", "DS_1;DS_3")
If you execute this command, the data for data source DS_1 and DS_3 is refreshed from the
server.

SAPMoveDimension

With this API method, you can define the position of a dimension in the crosstab, swap the
dimension with another one or position a dimension relative to another one.

To call the method, use Application.Run and specify the input parameters shown in the
examples that follow.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 5

Example:

Dim lResult As Long
lResult= Application.Run("SAPMoveDimension", "DS_1", "0COUNTRY", "AFTER",
"0CALMONTH")
If you execute this command, dimension 0COUNTRY will be inserted in the crosstab to the
position after dimension 0CALMONTH.

Example

Dim lResult As Long
lResult= Application.Run("SAPMoveDimension", "DS_1", "0COUNTRY", "ROWS",
"2")
If you execute this command, dimension 0COUNTRY is added as second entry to the rows in the
crosstab.

SAPSetVariable

With this API method, you can define values for input-ready BW variables (prompts). If you want
to set multiple variables, you can use the PauseVariableSubmit command with the
SAPExecuteCommand method.

To call the method, use Application.Run and specify the following input parameters:

● Prompt Name: Name or technical name of the BW variable to be filtered.

● Prompt Value: String that represents the value for the prompt, for example the technical
name. Note the syntax rules for entering values.

● Value Format:

- Text: Single member as text.

- Key: Single member as key.

- INTERNAL_KEY: Single member with its internal key.

- INPUT_STRING: Complex selection of members.

- INPUT_STRING_AS_ARRAY: Returns the input string as string as array. Note that the KEY
and INTERNAL_KEY depend on the InfoObject modeling in SAP NetWeaver BW.

● Formula Alias: Enter the formula alias for the data source. You can set the alias when
configuring the data source on the Components tab in the design panel. You have to define this
parameter if the variables in the workbook are not merged. If the variables in the workbook are
merged, you can define this parameter but you do not have to define it.

The system returns one of the following output parameters for each function execution:

0 = execution failed.

1 = execution successful.

The following is an example of how to use the SAPSetVariable API.

We are using a query with a variable for Country. The user wants to select a country via a drop
down box (combo box) to select the country. To do this we need to:

Unit 1: Generated Learning Group

6 © Copyright . All rights reserved.

1. Insert the combo box. When a new country is selected, the system will perform a refresh with
the selected member.

2. Create a Settings worksheet with the following:

● The range of countries text and keys in A2:B4

● The index function in E2 which converts index values to members

3. Configure the Format Control to read the range of members in the Settings sheet and
generate an index value for the selected country.

4. Create a macro with the following:

● The SAPSetVariable API calls the P_VAR_COUNTRY variable

● The Settings worksheet cell E2 provides the selected country key value

● The DS_1 is the alias for the query with the variable

Figure 1: How to Use the SAPSetVariable API

SAPSetRefreshBehaviour

With this API method, you can use different API methods one after the other without the result
set being refreshed and without the message dialog being shown.

To call the method, use Application.Run and specify the following input parameters:

● Mode: Define whether the mode is On or Off.

● Message Display: Define whether the message display is On or Off. The default setting is Off.

The system returns one of the following output parameters for each function execution:

0 = execution failed.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 7

1 = execution successful.

The following is an example of how to use SAPSetRefreshBehaviour. The set up from the previous
SAPSetVariable is still in place except the country drop down is not assigned a macro any longer
(now we want to use the Transfer Selection button to trigger a refresh).

The business requirement is to provide a button to transfer multiple data selections to reduce the
overall wait time for data refreshes.

To do this we need to:

1. Insert a button.

2. Create a Settings worksheet with the following:

● The range of divisions text and keys in A8:B10

● The index function in E8 which converts index values to members

3. Configure the Format Control to read the range of members in the Settings sheet and
generate an index value for the selected division.

4. Create a macro with the following:

● Use SAPSetRefreshBehaviour to turn refresh off

● Determine the country id for the P_VAR_COUNTRY variable

● Determine the division member id for the SAPSetFilter command

● Turn refresh behavior back on

Figure 2: How to Use the SAPSetRefreshBehaviour API

SAPSetFilter

Unit 1: Generated Learning Group

8 © Copyright . All rights reserved.

With this API method, you can define which members of a dimension should be filtered. You can
also use this method to define the filter for a planning function.

To call the method, use Application.Run and specify the input parameters shown in the
examples below.

Example

Dim lResult as long
lResult= Application.Run("SAPSetFilter", "DS_1", "0SOLD_TO__0COUNTRY",
"CA;US;DE", "INPUT_STRING")
With this example, you set the filter for dimension 0SOLD_TO__0COUNTRY of data source DS_1
to the countries USA, Canada and Germany using member format INPUT_STRING.

Example

The following is an example of how to use SAPSetFilter. The business requirement is to provide
check boxes to select one or more members and a create filter push button to transfer the
selections.

To do this we need to:

1. Insert the checkboxes.

2. Create a Settings worksheet with the following:

● The range of sales organizations text and keys in B4:C7

● The count function in C9 to determine the number of sales organizations selected

3. Configure the Format Control for each check box to read the members in the Settings sheet.

4. Create a macro with the following code:
Sub Create_Filter()
(This is the sub routine)
Dim Act_true As Integer
(this declares the local variable Act_true as an integer)
Dim Number_true As Integer
(this declares the local variable Number_true as an integer)
Dim Filter_Value As String
(this declares the local variable as a string)
Number_true = Worksheets("Settings").Range("C9").Value
(C9 is the source for Number_true)
For i = 4 To 7
(this is the loop … i=rows 4 through 7)
 If Worksheets("Settings").Cells(i, 3).Value = "True" Then
(if cell C4 … in loop #1 … is true then)
 Act_true = Act_true + 1
(Act_true is 0 initially … this makes it 1 in loop #1)
 Filter_Value = Filter_Value & Worksheets("Settings").Cells(i, 2).Value
(the Filter_ Value = B4 in loop #1)
 If Act_true < Number_true Then Filter_Value = Filter_Value & ";"
(in loop #1, if Act_true > C9 … then concatenate with ; as a separator)
 End If
(this ends the if statement)
Next
ret = Application.Run("SAPSetFilter", "DS_1", "0SALESORG", Filter_Value,
"Input_String")

Lesson: Generated Learning Object

© Copyright . All rights reserved. 9

(return an input string = the SAPSetFilter for datasource DS_1 for
dimension 0SALESORG with a filter value of 1000;2400 for example)
End Sub
(end sub routine)

Figure 3: How to Use SAPSetFilter

Analysis Functions
You can use the Analysis functions in VBA macros. The return value of a formula in a macro
corresponds to the return value of the formula used in a Microsoft Excel sheet. Depending on the
function that you use, a formula can either return a single value (single string value) or a list
(array). If the list contains only one line, the returning array is one-dimensional. If the list contains
two or more lines the array is two-dimensional.

If you use a formula in a macro, the function is the first parameter followed by the arguments you
use to create a formula with this function.

If a formula is invalid, Microsoft Excel returns an error.

Example

Formula returning a single string value

Dim lResult As Variant
lResult = Application.Run("SAPGetVariable", "DS_2", "0BW_VAR", "Value")
This formula returns the current value of variable 0BW_VAR.

Example

Formula returning an array

Dim lResult As Variant
lResult = Application.Run("SAPListOfDimensions", "DS_1")

Unit 1: Generated Learning Group

10 © Copyright . All rights reserved.

This formula returns a list with the dimensions of data source DS_1. If the data source contains
only one dimension, the returned array is one-dimensional.

To make your programming easier, you can create an additional function to ensure that the array
is always two-dimensional, for example the function GetAsTwoDimArray.

How to Create a List and Use Microsoft Excel VBA to Transfer the Value to a Prompt
For the demonstration steps and data, see the Create a Dynamic Drop-down List Using Microsoft
Excel VBA and Create a Button to Transfer Selections Using Microsoft Excel VBA exercises.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 11

Unit 1: Generated Learning Group

12 © Copyright . All rights reserved.

Unit 1
Exercise 1

13
Create a Dynamic Drop-down List Using
Microsoft Excel VBA

Business Example

As an analyst, you often have requirements that call for VBA. Now, you need to use VBA in
Analysis to create a dynamic drop-down box that will be used to provide a member value to a
variable.

In this exercise, where you see the characters ##, replace them with the number your instructor
assigned you.

1. Start Analysis for Microsoft Excel.

2. Log on to the BI Platform via Enterprise authentication, using the following credentials:
User: train-##
Password: train-##
Authentication: Enterprise

3. Log on to the RWB BW server using the following credentials:
Client: 800
User: user##
Password: user##
Language: Preferred language key such as EN for English, DE for German, and so on.

4. Open the Analysis of Special Countries query.

5. Move the crosstab to D1 and turn the Developers tab on.

6. Enter a label of Country in A2 with a column width of 20.

7. Add a combo box(drop-down) in B2.

8. Add information in Sheet2 that will allow communication between the drop-down and the
macro, and rename Sheet2 to Settings. Enter the information as shown in the Settings sheet
below. You also need to add the following parameters into the combo box’s Form Control:

● Input range: Settings!A2:A4
● Cell link field: Settings!D2
● Drop-down lines: 3
● In the Settings Worksheet, add the following function in cell E2: =INDEX(B2:B4,D2,1)

© Copyright . All rights reserved. 13

Figure 4: Settings Sheet

9. Use a macro with the command SAPSetVariable to transfer the selected value (in cell
Settings!E2) to the prompt (P_VAR_COUNTRY).
Name the macro Country2Prompt. The macro code for this example (with 3 lines of code),
follows:

Sub Country2Prompt()
r = Application.Run("SAPSetVariable",
"P_VAR_COUNTRY",Worksheets("Settings").Range("E2").Value, "Key","DS_1")
End Sub

There is no line break in line 2 above.

10. Test the macro by selecting France.

11. Save the workbook as a macro enabled workbook to the remote desktop with a Name of VBA
Dynamic Drop-down Workbook ##.

Unit 1: Generated Learning Group

14 © Copyright . All rights reserved.

Unit 1
Solution 1

15
Create a Dynamic Drop-down List Using
Microsoft Excel VBA

Business Example

As an analyst, you often have requirements that call for VBA. Now, you need to use VBA in
Analysis to create a dynamic drop-down box that will be used to provide a member value to a
variable.

In this exercise, where you see the characters ##, replace them with the number your instructor
assigned you.

1. Start Analysis for Microsoft Excel.
a) From the Windows Start menu, choose All Programs → SAP Business Intelligence → SAP

BusinessObjects Analysis → Analysis for Microsoft Excel.

b) Choose the Analysis tab.

c) Choose Insert → Select Data Source…

d) Choose Options from the lower right.

2. Log on to the BI Platform via Enterprise authentication, using the following credentials:
User: train-##
Password: train-##
Authentication: Enterprise
a) Enter the credentials shown above.

b) Choose OK.
The Select Data Source dialog box appears.

3. Log on to the RWB BW server using the following credentials:
Client: 800
User: user##
Password: user##
Language: Preferred language key such as EN for English, DE for German, and so on.

a) Double click the RWB System Connection.

b) Choose Options.

c) Enter the credentials shown above.
If you have not reset your password, use a password of INITIAL and reset it to user##.

© Copyright . All rights reserved. 15

d) Choose OK.

4. Open the Analysis of Special Countries query.
a) Next to Search For, enter Country Sales Analysis.

b) Press Enter.

c) Locate Analysis of Special Countries (P_QD_COUNTRY_SPEC_ANALYSIS).

d) Choose OK.

e) In the Prompt dialog box, choose Germany (DE).

f) Choose OK.

5. Move the crosstab to D1 and turn the Developers tab on.
a) Place your cursor in cell D1.

b) Choose the Components tab on the lower right.

c) Expand the Analysis of Special Countries query.

d) Right click on Crosstab 1 and select Move to.

e) Choose OK.

f) From the File menu, choose Options.

g) In the left pane, select Customize Ribbon.

h) In the Main Tabs pane on the right, select Developer.

i) Choose OK.

6. Enter a label of Country in A2 with a column width of 20.
a) In cell A2, enter Country.

b) In Sheet1, right click on column B.

c) Choose Column Width and enter 20.

d) Choose OK.

7. Add a combo box(drop-down) in B2.
a) Choose the Developer tab.

b) Choose Insert.

c) Under Form Controls, choose the Combo Box icon.
Your cursor turns into a cross hair that you can use to place the combo box item.

d) Draw a box around cell B2.
A drop-down now appears in cell B2.

8. Add information in Sheet2 that will allow communication between the drop-down and the
macro, and rename Sheet2 to Settings. Enter the information as shown in the Settings sheet
below. You also need to add the following parameters into the combo box’s Form Control:

Unit 1: Generated Learning Group

16 © Copyright . All rights reserved.

● Input range: Settings!A2:A4
● Cell link field: Settings!D2
● Drop-down lines: 3
● In the Settings Worksheet, add the following function in cell E2: =INDEX(B2:B4,D2,1)

Figure 4: Settings Sheet

a) Right click on Sheet2.

b) Choose Rename.

c) Enter Settings.

d) Enter the information in the Settings sheet as shown above and in the figure below.

e) Choose Sheet1.

f) Right click the Combo Box in cell B2 and choose Format Control.

g) Input the Form Control values as shown in the figure below.

Hint:
Instead of typing the cell ranges, simply use your mouse to click on the
Settings sheet and highlight the range you want.

Figure 5: Combo Box Format Control Settings for Country

h) Choose OK.

i) Choose the Settings worksheet.

j) In cell E2 enter =INDEX(B2:B4,D2,1) as shown below.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 17

Figure 6: Country Index Function

k) Choose Sheet1.

l) Use the drop-down to select a Country such as Germany.

m) Choose the Settings sheet.

Figure 7: Settings Sheet with Germany Selected

Since Germany is chosen, the Selected Country is DE and the Selected Index is 1 (ie
Germany is the 1st country in the list).

9. Use a macro with the command SAPSetVariable to transfer the selected value (in cell
Settings!E2) to the prompt (P_VAR_COUNTRY).
Name the macro Country2Prompt. The macro code for this example (with 3 lines of code),
follows:

Sub Country2Prompt()
r = Application.Run("SAPSetVariable",
"P_VAR_COUNTRY",Worksheets("Settings").Range("E2").Value, "Key","DS_1")
End Sub

There is no line break in line 2 above.
a) In Sheet1, right click the Combo Box.

b) In cell B2, choose Assign Macro.
The Assign Macro dialog box displays.

c) Under Macro name enter Country2Prompt.

d) Choose New.

Unit 1: Generated Learning Group

18 © Copyright . All rights reserved.

The Microsoft Visual Basic editor opens for Module1.

e) Enter the 3 lines of code as shown above and in the figure below.

Figure 8: VBA Editor with 3 Lines of Code for the Country Prompt

The macro is contained in Module1.

f) Keep the VBA editor open.

10. Test the macro by selecting France.
a) Go back to Excel in Sheet1.

b) Use the Country drop-down to select France.

Hint:
You may need to click in cell A4, for example, to get the dro-down out of edit
mode.

Figure 9: Result of Drop-down and VBA for France

Your report now displays France.

11. Save the workbook as a macro enabled workbook to the remote desktop with a Name of VBA
Dynamic Drop-down Workbook ##.

a) Choose File → Save As.

b) Choose Desktop.

c) Next to File Name, enter the name shown above.

d) Next to Save as Type, choose Excel Macro-Enabled Workbook(*.xlsm).

e) Choose Save.

f) Keep the workbook open for the next exercise.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 19

Unit 1: Generated Learning Group

20 © Copyright . All rights reserved.

Unit 1
Exercise 2

21
Create a Button to Transfer Selections Using
Microsoft Excel VBA

Business Example

As an analyst, your users often need to do multiple member selections. Rather than performing a
data refresh after each selection, you want to postpone the refresh until all selections are made,
in order to reduce the overall wait time.

In this exercise, where you see the characters ##, replace them with the number your instructor
assigned you.

1. Open the workbook VBA Dynamic Drop-down Workbook ##, if necessary.

2. Turn the Developers tab on, if necessary.

3. Add a combo box(drop-down) in B4 with a label of Division in A4.

4. Add information in the Settings sheet that will allow communication between the drop-down
and the macro. Use the following three parameters for the combo box's form control:

● Input range: Settings!A8:A10
● Cell link field: Settings!D8
● Drop-down lines: 3
● In the Settings Worksheet, input the following in cell E8: =INDEX(B8:B10,D8,1)
● In the Settings Worksheet, input the Division Text and Keys of Pumps 01, High Tech 07,

Service 08

Figure 10: Settings Sheet with Division Text and Key

5. Delete the assigned macro from the Country drop-down box.

6. Add a button in cell B6 with a macro to transfer the data selections.
Name the new macro Transfer_Selection.

© Copyright . All rights reserved. 21

The macro for this example (with 6 lines of code), is as follows:
Sub Transfer_Selection()
r = Application.Run(“SAPSetRefreshBehaviour”, “Off”)
r = Application.Run("SAPSetVariable", "P_VAR_COUNTRY",
Worksheets("Settings").Range("E2").Value, "Key", "DS_1")
r = Application.Run("SAPSetFilter", "DS_1", "0DIVISION",
Worksheets("Settings").Range("E8").Value, "Key")
End Sub
7. Test the button by selecting Germany and Pumps.

8. View the filter for Division from the Analysis tab on the lower right.

9. Save the workbook as a macro enabled workbook to the remote desktop with a Name of VBA
button to Transfer Selections Workbook ##.

Unit 1: Generated Learning Group

22 © Copyright . All rights reserved.

Unit 1
Solution 2

23
Create a Button to Transfer Selections Using
Microsoft Excel VBA

Business Example

As an analyst, your users often need to do multiple member selections. Rather than performing a
data refresh after each selection, you want to postpone the refresh until all selections are made,
in order to reduce the overall wait time.

In this exercise, where you see the characters ##, replace them with the number your instructor
assigned you.

1. Open the workbook VBA Dynamic Drop-down Workbook ##, if necessary.
a) Choose File → Open.

b) Choose the Remote Desktop.

c) Choose the workbook named VBA Dynamic Drop-down Workbook ##.

2. Turn the Developers tab on, if necessary.
a) From the File menu, choose Options.

b) In the left pane, choose Customize Ribbon.

c) In the Main Tabs pane, choose Developer.

d) Choose OK.

3. Add a combo box(drop-down) in B4 with a label of Division in A4.
a) In cell A4, enter Division.

b) Choose the Developer tab.

c) Choose Insert.

d) Under Form Controls, choose the Combo Box icon.
Your cursor turns into a cross hair that you can use to place the combo box item.

e) Draw a box around cell B4.
A drop-down now is displayed in cell B4.

4. Add information in the Settings sheet that will allow communication between the drop-down
and the macro. Use the following three parameters for the combo box's form control:

● Input range: Settings!A8:A10
● Cell link field: Settings!D8

© Copyright . All rights reserved. 23

● Drop-down lines: 3
● In the Settings Worksheet, input the following in cell E8: =INDEX(B8:B10,D8,1)
● In the Settings Worksheet, input the Division Text and Keys of Pumps 01, High Tech 07,

Service 08

Figure 10: Settings Sheet with Division Text and Key

a) Choose the Settings sheet.

b) Starting in cell A7, enter the information in the Settings sheet shown in the fugure above.

Caution:
If 01, 07, and 08 appear as 1, 7, and 8 set the format to text for cells B8-10.

c) Choose Sheet1.

d) Right click the Combo Box in cell B4.

e) Choose Format Control.

f) Input the Form Control values listed in the figure below:

Figure 11: Combo Box Format Control Settings for Division

g) Choose OK.

h) Choose the Settings worksheet.

i) In cell E8 enter =INDEX(B8:B10,D8,1).
If you get a message, continue through it.

j) Choose Sheet1.

k) Select a Division such as High Tech.

Unit 1: Generated Learning Group

24 © Copyright . All rights reserved.

Hint:
You may need to click in cell A6, for example, to get the drop down out of edit
mode.

l) Choose the Settings worksheet.

Figure 12: Settings Sheet with an Index Set To High Tech (07)

The selected Division is High Tech.

5. Delete the assigned macro from the Country drop-down box.
a) Go to Sheet1.

b) In cell B2, right click on the Country drop-down box.

c) Choose Assign Macro.

d) Under Macro name, use your delete key to delete the macro.

Figure 13: Country Drop-down Without a Macro

The drop-down is no longer attached to a macro.

e) Choose OK.

6. Add a button in cell B6 with a macro to transfer the data selections.
Name the new macro Transfer_Selection.

The macro for this example (with 6 lines of code), is as follows:
Sub Transfer_Selection()
r = Application.Run(“SAPSetRefreshBehaviour”, “Off”)
r = Application.Run("SAPSetVariable", "P_VAR_COUNTRY",
Worksheets("Settings").Range("E2").Value, "Key", "DS_1")

Lesson: Generated Learning Object

© Copyright . All rights reserved. 25

r = Application.Run("SAPSetFilter", "DS_1", "0DIVISION",
Worksheets("Settings").Range("E8").Value, "Key")
End Sub

a) In Sheet1, choose the Developer tab.

b) Choose Insert → Button.

Figure 14: Insert Button

c) Place the button in cell B6:C6.
The Assign Macro window opens.

d) Under Macro name, enter Transfer_Selection.

e) Choose New.

f) Modify your code as shown.

Figure 15: Modify Transfer Selection Code

g) Go back to Excel.

h) Left click the button in B6 and enter a description of Transfer Selections.

7. Test the button by selecting Germany and Pumps.
a) Use the Country drop-down to select Germany.

Your report is not affected.

b) Use the Division drop-down to select Pumps.
Your report is not affected.

c) Press the Transfer Selections button.
Your report now displays DE (Germany) in the rows and is restricted to the Pumps
Division.

8. View the filter for Division from the Analysis tab on the lower right.
a) Select the Analysis tab on the lower right.

b) Expand Division in the Background Filter window.

Unit 1: Generated Learning Group

26 © Copyright . All rights reserved.

Figure 16: Result of Using the Transfer Selections Button

Division is restricted to Pumps.

9. Save the workbook as a macro enabled workbook to the remote desktop with a Name of VBA
button to Transfer Selections Workbook ##.

a) Choose Desktop.

b) Next to File Name, enter the name shown above.

c) Next to Save as Type, choose Excel Macro-Enabled Workbook(*.xlsm).

d) Choose Save.

e) Keep Analysis open for the next exercise.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 27

Unit 1: Generated Learning Group

28 © Copyright . All rights reserved.

Unit 1
Exercise 3

29
Using Microsoft Excel VBA with Check Boxes for
Filtering (Optional)

Business Example

As an analyst, you know users spend a lot of time waiting for the system to refresh while selecting
members. In this scenario the user needs checkboxes to select one or more sales organizations
and they do not want a system refresh until they have finalized their selections. You decide to add
a button and macro to turn off the system refresh, determine the sales organizations selected,
and then refresh the data.

In this exercise, where you see the characters ##, replace them with the number your instructor
assigned you.

1. Start Analysis for Microsoft Excel.

2. Log on to the BI Platform via Enterprise authentication, using the following credentials:
User: train-##
Password: train-##
Authentication: Enterprise

3. Log on to the RWB BW server using the following credentials:
Client: 800
User: user##
Password: user##
Language: Preferred language key such as EN for English, DE for German, and so on.

4. Open the Country Sales Analysis query.

5. Move the crosstab to D1.

6. Remove Sold-toPartyCountry from the Rows, add Sales Organization into the Rows.

7. Turn the Developers tab on, if necessary.

8. Add four check boxes and label them as shown in the figure below.

Hint:
The checkboxes do not have to be in the exact cells as shown in the figure below.

© Copyright . All rights reserved. 29

Figure 17: Workbook with Four Checkboxes

9. Re-name Sheet2 to Settings. Add information in the Settings sheet that will allow
communication between the checkbox and the macro as shown below.
C9 Cell Value: =COUNTIF(C4:C7,”TRUE”)

Figure 18: Settings Sheet for Check Boxes

10. In the format control for each checkbox, configure the cell link as shown below.

● Frankfurt: Settings!C4
● Denver: Settings!C5
● Rotterdm: Settings!C6
● Milan: Settings!C7

11. Do a preliminary test of the check boxes for Frankfurt and Milan. In the Settings sheet you
should see the following:

Unit 1: Generated Learning Group

30 © Copyright . All rights reserved.

Figure 19: Preliminary Test with Frankfurt and Milan Selected

12. In Sheet1, add a button in A6 and A7 called Create Filter with a macro that will identify the
selected members separated by a “;”, and transfer them via the SAPSetFilter command. The
macro code is shown below:

Sub Create_Filter()
Dim Act_true As Integer
Dim Number_true As Integer
Dim Filter_Value As String
For i = 4 To 7
If Worksheets("Settings").Cells(i, 3).Value = "True" Then Act_true =
Act_true + 1 Filter_Value = Filter_Value &
Worksheets("Settings").Cells(i, 2).Value
If Act_true < Number_true Then Filter_Value = Filter_Value & ";"
End If
Next
ret = Application.Run("SAPSetFilter", "DS_1", "0SALESORG", Filter_Value,
"Input_String")
End Sub
13. Test the macro by selecting Denver and Rotterdm.

14. Save the workbook as a macro enabled workbook to the remote desktop with a Name of VBA
Checkboxes Workbook ##.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 31

Unit 1
Solution 3

32
Using Microsoft Excel VBA with Check Boxes for
Filtering (Optional)

Business Example

As an analyst, you know users spend a lot of time waiting for the system to refresh while selecting
members. In this scenario the user needs checkboxes to select one or more sales organizations
and they do not want a system refresh until they have finalized their selections. You decide to add
a button and macro to turn off the system refresh, determine the sales organizations selected,
and then refresh the data.

In this exercise, where you see the characters ##, replace them with the number your instructor
assigned you.

1. Start Analysis for Microsoft Excel.
a) From the Windows Start menu, choose All Programs → SAP Business Intelligence → SAP

BusinessObjects Analysis → Analysis for Microsoft Excel.

b) Choose the Analysis tab.

c) Place your cursor in cell D1.

d) Choose Insert → Select Data Source…

e) Choose Options from the lower right.

2. Log on to the BI Platform via Enterprise authentication, using the following credentials:
User: train-##
Password: train-##
Authentication: Enterprise
a) Enter the credentials shown above.

b) Choose OK.
The Select Data Source dialog box appears.

3. Log on to the RWB BW server using the following credentials:
Client: 800
User: user##
Password: user##
Language: Preferred language key such as EN for English, DE for German, and so on.

a) Double click the RWB System Connection.

32 © Copyright . All rights reserved.

b) Choose Options.

c) Enter the credentials shown above.
If you have not reset your password, use a password of INITIAL and reset it to user##.

d) Choose OK.

4. Open the Country Sales Analysis query.
a) Next to Search For, enter Country Sales Analysis.

b) Press Enter.

c) Locate Country Sales Analysis(P_QD_COUNTRY_SALES).

d) Choose OK.

5. Move the crosstab to D1.
a) Place your cursor in cell D1.

b) Choose the Components tab on the lower right.

c) Expand the Country Sales Analysis query.

d) Right click on Crosstab 1.

e) Choose Move to.

f) Choose OK.

6. Remove Sold-toPartyCountry from the Rows, add Sales Organization into the Rows.
a) Choose the Analysis tab on the lower right.

b) Drag Sold-toPartyCountry out of the Rows.

c) Drag Sales Organization into the Rows.

7. Turn the Developers tab on, if necessary.
a) From the File menu, choose Options.

b) In the left pane, select Customize Ribbon.

c) In the Main Tabs pane on the right, select Developer.

d) Choose OK.

8. Add four check boxes and label them as shown in the figure below.

Hint:
The checkboxes do not have to be in the exact cells as shown in the figure below.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 33

Figure 17: Workbook with Four Checkboxes

a) Choose the Developer tab.

b) Choose Insert.

c) Choose the Check Box icon.
Your cursor turns into a cross hair that you can use to place the check box.

d) Draw a box around cell A1.

Hint:
Just after dropping the checkbox, simply type the name of the city since you
are in edit mode.

A drop-down now appears in cell A1 and is ready for input.

e) Enter Frankfurt.

f) Repeat steps b, through e for Denver, Rotterdm, and Milan.

9. Re-name Sheet2 to Settings. Add information in the Settings sheet that will allow
communication between the checkbox and the macro as shown below.
C9 Cell Value: =COUNTIF(C4:C7,”TRUE”)

Figure 18: Settings Sheet for Check Boxes

a) In cell C9 enter the function shown above.

Unit 1: Generated Learning Group

34 © Copyright . All rights reserved.

b) Right click on Sheet2.

c) Choose Rename.

d) Enter Settings.

e) Choose OK.

f) Enter the information in the Settings sheet as shown in the figure above.

g) In cell C9 enter =COUNTIF(C4;C7,"TRUE").

Hint:
Continue through any Excel messages.

10. In the format control for each checkbox, configure the cell link as shown below.

● Frankfurt: Settings!C4
● Denver: Settings!C5
● Rotterdm: Settings!C6
● Milan: Settings!C7

a) Go to Sheet1.

b) Right click on the Frankfurt checkbox in cell A1.

c) Choose Format Control.

d) Choose the Control tab.

e) Next to Cell link, enter the cell reference shown above.

Hint:
Instead of typing, simply left click in the field next to Cell Link and then move
your cursor to the Settings sheet cell C4 and press enter.

f) Repeat step a, through d for the Denver, Rotterdm, and Milan check boxes using the cell
references shown above.

11. Do a preliminary test of the check boxes for Frankfurt and Milan. In the Settings sheet you
should see the following:

Lesson: Generated Learning Object

© Copyright . All rights reserved. 35

Figure 19: Preliminary Test with Frankfurt and Milan Selected

a) In Sheet1, select Frankfurt and Milan.
In the Settings sheet, you should see the result shown in the figure above.

12. In Sheet1, add a button in A6 and A7 called Create Filter with a macro that will identify the
selected members separated by a “;”, and transfer them via the SAPSetFilter command. The
macro code is shown below:

Sub Create_Filter()
Dim Act_true As Integer
Dim Number_true As Integer
Dim Filter_Value As String
For i = 4 To 7
If Worksheets("Settings").Cells(i, 3).Value = "True" Then Act_true =
Act_true + 1 Filter_Value = Filter_Value &
Worksheets("Settings").Cells(i, 2).Value
If Act_true < Number_true Then Filter_Value = Filter_Value & ";"
End If
Next
ret = Application.Run("SAPSetFilter", "DS_1", "0SALESORG", Filter_Value,
"Input_String")
End Sub

a) In Sheet1, choose the Developer tab.

b) Choose Insert → Button.

c) Place the button in cell A6 and A7. The Assign Macro window opens.

d) Under Macro name, enter Create_Filter.

e) Choose New.

f) Enter the macro code shown above and in the figure below, and keep the VBA editor open
when finished.

Unit 1: Generated Learning Group

36 © Copyright . All rights reserved.

Figure 20: VBA Code for Check Boxes

g) Go back to Sheet1 in Excel.

h) In the button, enter a text of Create Filter.

13. Test the macro by selecting Denver and Rotterdm.
a) Select only Denver and Rotterdm.

b) Press the Create Filter button.

Figure 21: Result of Check Boxes and Button

Your report now displays Denver and Rotterdm.

14. Save the workbook as a macro enabled workbook to the remote desktop with a Name of VBA
Checkboxes Workbook ##.

a) Choose File → Save As.

b) Choose Desktop.

c) Next to File Name, enter the name shown above.

d) Next to Save as Type, choose Excel Macro-Enabled Workbook(*.xlsm).

e) Choose Save.

f) Choose File → Exit.

Lesson: Generated Learning Object

© Copyright . All rights reserved. 37

LESSON SUMMARY
You should now be able to:

● Extend workbook display options with functions and Microsoft Excel VBA

Unit 1: Generated Learning Group

38 © Copyright . All rights reserved.

Unit 1

39
Learning Assessment

1. Choose the correct answers.

X A

© Copyright . All rights reserved. 39

Unit 1

40
Learning Assessment - Answers

1. Choose the correct answers.

X A

40 © Copyright . All rights reserved.

	Contents
	Course Overview
	Unit 1: Generated Learning Group
	Lesson 1: Generated Learning Object
	Functions and VBA
	Macros
	Analysis Functions
	Demonstration: How to Create a List and Use Microsoft Excel VBA to Transfer the Value to a Prompt
	Exercise 1: Create a Dynamic Drop-down List Using Microsoft Excel VBA
	Exercise 2: Create a Button to Transfer Selections Using Microsoft Excel VBA
	Exercise 3: Using Microsoft Excel VBA with Check Boxes for Filtering (Optional)

